NASA Technical Paper 2803

March 1988

Investigation of the Misfueling of Reciprocating Piston Aircraft Engines

J. Holland Scott, Jr.

(NASA-TP-2803) INVESTIGATION OF THE MISFUELING OF RECIPPOCATING PISTON AIRCLAFT ENGINES (NASA) 82 P CSCL JIV

1188-21144

Unclas 81/03 0140732

NASA Technical Paper 2803

1988

Investigation of the Misfueling of Reciprocating Piston Aircraft Engines

J. Holland Scott, Jr.

Goddard Space Flight Center Wallops Flight Facility Wallops Island, Virginia

Scientific and Technical Information Division

TABLE OF CONTENTS

PREFACE	V
INTRODUCTION	1
DESCRIPTION OF THE PROBLEM	1
TEST DESIGN PHILOSOPHY	4
EVAPORATION TEST	5
GAS CHROMATOGRAPH TEST	8
CONCLUDING REMARKS	10
APPENDIX A - Evaporation Test Data Summary	A-1
APPENDIX B - REFERENCES	B-1
APPENDIX C - Development of a Test Kit to Detect Jet Fuel Contamination of Avgas (ATTACHMENT A)	C-1
APPENDIX D - Modification to a Gas Chromatograph to Detect Jet Fuel Contamination of Aviation Gasoline (ATTACHMENT B)	D-1

PRECEDING PAGE BLANK NOT FILMED

PREFACE

The investigation of the inadverοf misfueling general aircraft described aviation this report was conducted under certain policies adopted by the Aeronautics and National Space Administration (NASA) as a part of its charter. One of these policies that the scientific states technology developed as a result of the agency's operation shall be transferred to the user community benefit οf for the mankind. this Publication of document represents the transfer of this general information to the aviation community and resolution agency's of the commitment. Reports from two private companies, who were employed to prototype instruments develop after a successful design concept was demonstrated, are included in this document. Both reports are published in their entirety to tacilitate the readers comprehension of the project.

The Aircraft Misfueling Detection managed by Project was Aeronautical Projects Section, Suborbital Projects and Operations Directorate; Goddard Space Flight Center/Wallops Flight Facility, Wallops Island, Virginia. Financial management was provided by the Chief Engineer's Office, NASA Headquarters, Washington, D.C. Support contractors for this investigation were the Aircraft Owners and Pilots Association (AOPA), Frederick, Maryland, and Instrument Co., GOW-MAC Bridgewater, New Jersey. Appreciation for their cooperation is gratefully acknowledged.

The author would like to thank all contributed to those who effort, especially the task force committee for their steering conscientious guidance. Mr. Fred Quarles, an active AOPA member, deserves grateful recognition for suggestion that fuel jet detection may be determined by use of the evaporation method. Petroleum Testing Laboratory the Norfolk Naval Supply Station, Virginia, tested Norfolk, contamination samples to determine octane degradation, for which we are very appreciative.

Katherine Hooks, a most efficient Chemal, Inc. laboratory technician, spent many hours processing fuel samples and providing other valuable support. The enthusiasm she exhibited and her contributions to the project merit the special recognition of the author.

PRECEDING FAGE BLANK NOT FILMED

INVESTIGATION OF THE MISFUELING

OF

RECIPROCATING PISTON AIRCRAFT ENGINES

J. Holland Scott, Jr.
NASA Goddard Space Flight Center
Wallops Flight Facility
Wallops Island, VA 23337

INTRODUCTION

The General Aviation Manufacturers Association (GAMA) and the American Petroleum Institute (API) convened a task force of industry and government representatives in Washington, D.C. during November, 1982. The group was charged with investigation ο£ the rapidly increasing problem of inadvertent misfueling of general aviation aircraft. More specifically, the problem involved the introduction of jet fuel (either unadulterated as а mixture with aviation gasoline) into reciprocating a piston aircraft engine. Designed solely for use aviation οf gasoline (avgas), such engines are jet intolerant of fuel, often resulting in destruction of the engine and catastrophic aircraft crashes. The potential for injury, death, and equipment damage in these situations is unusually high.

This report contains the results of NASA's participation in the task force activities.

DESCRIPTION OF THE PROBLEM

From 1970 through 1981 there were 54 reported accidents related to improper fuel grade that occurred in the continental United States. Thirteen of these accounted for 34 fatalities and 43 injuries. Half involved privately owned aircraft, but 22 percent corporate/executive involved air taxi operations. In four of the above accidents total pilot flight time in fixed-wing aircraft ranged from 4352 to 25871 hours. Of the four pilots, two had air transport ratings, one was a commercial flight instructor, and one was private pilot. Aircraft misfuelina accidents, profile indicates, and do can involve a wide cross section of pilots regardless of experience.

The task force of industry and government representatives, after reviewing these alarming statistics, organized a concerted effort reduce the potential misfueling general aviation aircraft. The result was promotion of innovative devices and methods such fuel identification as decals, banded fuel nozzles, fuel

filler pipe restrictors, oversize fuel nozzles, standard jet procedures, refueling educational/awareness training programs. NASA, currently engaged preliminary work on the problem, elected develop to tests to identify specific contaminated fuel prior to its in reciprocating consumption a piston aircraft engine.

Typically, many accidents related to misfueling happen during takeoff under maximum power as the reciprocating piston engine is exposed to high stress conditions damage to the occurs. As a result of consuming contaminated fuel there is seldom sufficient time or altitude after engine damage commences to take evasive action to avoid a crash, a factor that probably contributes the high fatality rate associated with incidents of this There have also type. aircraft incidents where were misfueled but fortunately the error was discovered in time to prevent mishap. Incidents of these types, for the most part, unreported, therefore the misfueling problem is more widespread than statistics tend to imply.

often results from Misfueling carelessness or ignorance quite often flightline personnel are involved. A typical example is the reciprocating piston engine DC-3 that crashed while departing a St. Louis airport after being misfueled. Failing to start refueler flightline the attendant mistakenly started a jet refueler and pumped jet fuel into resulting aircraft in one fatality and one serious injury. A similar accident occurred at Salisbury, Maryland when an Aero Commander 500B crashed on take-off killing all five persons aboard. The flightline attendant had

refueled with only a small amount of jet fuel, but enough to cause the aircraft to crash.

Jet fuel contamination of avgas can easily occur before the fuel reaches the flightline. Generally, refineries maintain high standards quality control over their products and formerly, the major processors fuel delivered fuel directly to the flightline and, on occasion, to the waiting aircraft. This control of their product is placed in the hands transport companies that pick up the products at the refinery and transport them to local distributors. These distributors then transport the fuel to the airport where it is placed in storage to be transported to the flightline refuelers in by flightline personnel. The potential for contamination of avgas exists at many points in the transportation process and increases with more frequent handling of the fuel.

The unlike jet engine, reciprocating piston engine which requires avgas, operates on a less costly, more efficient, kerosene base fuel. With the advent of the jet engine, fixed-base operators (FBO's) who previously refueled aircraft exclusively with avgas are now dispensing both fuels simultaneously. Thus the potential for inadvertently mixing the two fuels is increasing with greater fuel usage. The iet fuel contaminant causes а highly destructive process known "detonation" when the mixture consumed in a reciprocating piston engine.

The effect of consuming jet fuel in a reciprocating piston engine is both rapid and destructive. During the compression stroke of a spark ignition engine the

pressure, density, and temperature The is are increased. mixture ignited by an electrical spark after a proper delay time. The flame front created by ignition travels across the combustion chamber at a more or less orderly rate as pressure rises uniformly. the flame Ahead of front the unburned mixture is compressed by rising pressure with corresponding rise in temperature and density. Injection of jet fuel a contaminant alters ignition point of the unburned gas that it ignites before the flame front arrives. The result is autoignition within the unburned gases in advance of the approach-The flame front. orderly process becomes uncontrolled and a rise violent pressure occurs. Energy is released at such a high rate that the walls of the chamber vibrate. This phenomena is known as detonation and is analogous to the more familiar "knocking" in an automotive engine. It can become so extreme as to cause catastrophic destruction of the combustion chamber with subsequent engine failure.

Contamination of avgas by jet fuel also results in a decreased octane rating when compared with pure avgas. Therefore, the degradation was used as a baseline with which the test data derived from this experimentation could be related. It must be emphasized that this was not an attempt to evaluate the

tolerance of a reciprocating piston engine for contaminated fuel. The Petroleum Testing Laboratory Naval at the Norfolk Supply Station in Norfolk, Virginia, analyzed fuel samples to assist in evaluation of the extent of degradation at various contaminations. The Petroleum Testing Laboratory used a standard laboratory knock engine for these tests. contains a single cylinder, overtwo-bowl valves, а head carburetor, and a continuously ratio that variable compression may be changed at will during the operation. A synchronous generaphased to a.c. power, tor, maintains constant speed. The two carburetor float bowls can raised or lowered to change the fuel/air ratio. A blended fuel of known octane number, composed of n-heptane (octane number = 0) and iso-octane (octane number = 100), is placed in one bowl and the contaminated sample is placed in the other. The engine is started on the standard fuel under highly (temperacontrolled conditions ture, air intake, spark advance, The fuel/air ratio etc.). adjusted until maximum knock is obtained. The engine is then adjusted to a standard compression ratio and locked into position. The standard fuel is then replaced with the contaminated fuel and its octane rating is obtained from the standard knock meter engine. Table #1 illustrates the data obtained from this operation.

TABLE #1 OCTANE LOSS FROM CONTAMINATION

	CON	TAMINATION	LEVEL		
FUEL	1%	2%	3 %	4 %	5%
JET-A	* 0.9	$1\frac{23}{8}$	2.6	3.6	4.7
JP-4	0.6	1.2	2.2	2.7	3.3
JP-5	1.0	1.9	2.7	3.5	4.6
	* OCTANE	REDUCTION			

generally Engine manufacturers allow approximately 10 to 12 percent change in fuel/air ratio as a detonation margin. If this detonation margin is applied to knock limited power curves it will be found to equate to an octane loss of 2 to 3 octane numbers. That is, a loss of 2 to 3 octane numbers will use up the design safety margin and theoretically subject the engine to possible damage from detonation. Data from Table #1 indicates that a loss of octane numbers is reached slightly beyond 2% contamination of avgas by jet fuel. Therefore, a detection test must be capable of identifying any heavy hydrocarbon content in excess of that found in a mixture of 2% jet fuel contamination. This criteria becomes the sensitivity requirement οf the evaporation test discussed in the following section.

TEST DESIGN PHILOSOPHY

necessity designing of separate test instruments for each of two situations became quickly evident during the early stages of this investigation. Since contamination can occur at many points along the transportation route the FBO has a valid argument for an instrument with which to exercise good quality control over his fuel assure operation and handling delivery of an uncontaminated product to the aircraft. However, not all pilots obtain fuel from an FBO and the need exists for a oriented test be to performed during pre-flight tests that will assure him that he has uncontaminated fuel for flight. The pilot's test, performed on the flightline, must be quickly and easily completed in an environment

that is protected from varying flightline conditions. The FBO, however, operates in less variable environment afforded by office. his hangar He also services a large number of pilots and these two factors justify more comprehensive testing and equipment than those required by the pilot.

The philosophy described above led to the development of the Evaporation Test and the Gas Chromatograph Test for the pilot and the FBO, respectively. Prototype struments were designed for the Evaporation Test by AOPA Frederick, Maryland and for the Gas Chromatograph Test by GOW-MAC Instruments, Inc. of Bridgewater, The philosophy Jersev. data described in the following text were utilized in the design of these instruments. Reports from these companies each of are included this document as in ATTACHMENTS A(C-1)and B(D-1). NASA's intention is to record the results of this investigation so that the aircraft industry benefit from its use to decrease the potential for misfueling general aviation aircraft.

fuel both Avgas and jet are composed of hydrocarbon compounds are classified into include general types. These paraffins, napthenes, aromatics, and olefins; and their molecular weights vary respectively with paraffins being the lightest and most mobile. Avgas is comprised of smaller, primarily liahter hydrocarbon molecules while those οf iet fuel are larger heavier. Thus, identification of the detonation potential of jet fuel contamination in avgas becomes a factor of identifying the relative amount of the heavier compounds present. Ouantitative measurement is not necessary since

pure avgas and contaminated avgas furnish unique characteristics that are easily identified comparative analysis. In the case of the Evaporation Test, jet fuel contamination was found to retard the evaporation rate of avgas. The retardation exhibited a direct relationship to the amount of. contamination present and becomes an excellent measure of that contamination. The physical appearance of the evaporating fuel sample also takes on a unique characteristic that provides qualitative test for contamination of avgas by jet fuel.

The Gas Chromatograph Test, simiprinciple to the in Evaporation Test, is а more comprehensive test requiring more sophisticated equipment providing greater sensitivity. It utilizes the principle of preferential adsorption of hydrocarbon compounds by a selective medium. Comparative analysis of the resulting data may also be employed pure avgas components provide entirely different adsorptive characteristics than those of avgas contaminated with jet fuel.

Other test methods such as refracpaper chromatography, tometry, spectrofluorimetry, digital photometry, etc. were investigated for possible use in this project. Each was eliminated in favor of evaporation (pilot's test) and gas chromatography (FBO's test) as a means of detecting jet fuel contamination of avgas. Most of rejected methods were eliminated because of unreasonable equipment expense or increased test complexity.

Each of the two selected fuel contamination detection tests was subjected to intensive investigation in the chemistry laboratory at the Wallops Flight Facility.

The result was construction of a data base from which test sensitivity, sample size, contamination level, and environmental effects could be determined. The remainder of this document describes the manner in which that data was obtained and the recommendations that resulted from its analysis.

EVAPORATION TEST

The first evaporation tests were performed using ordinary brown kraft paper as the evaporation medium. Its universal availability and low cost were attractive for use in an inexpensive evaporation kit designed for use by pilots on the flightline. However, inconsistent results were obtained since kraft paper contains large variations in composition. Laboratory filter paper, unlike kraft paper, is produced under precise composition specifications and good guality control though more expensive, it produced excellent results. Its use in an evaporation kit projected considerable increase in expense. Tests were also performed on a relatively inexpensive adding machine paper. It proved to be a very efficient alternative to those evaporation media previously tested. Data results were quite similar to those derived from the use of laboratory filter paper and it is recommended for use in a low cost evaporation kit.

Environmental testing commenced after the paper evaporation medium established. Excessive conditions were found accelerate fuel evaporation, however, short term effects of temperature (0 to 40 deg C) and relative humidity (40 to 99%) were found to have a negligible effect. The use of a closed or protected container is recommended in

Attachment A (C-3) to eliminate the effects of wind and precipitation on the kit as it is used on the flightline.

basic Evaporation Test for The contaminated fuel consists of applying a measured fuel sample to the adding machine paper and observing its evaporation. Upon initial application the wet fuel appears as a visible spot on the paper. If the sample size large, excess fuel may appear on the inner portion of the spot. If the fuel is uncontaminated, the spot will shrink evenly to very small dimensions before it completely disappears. In contrast, if the fuel is contaminated, the will not shrink as spot evaporation Instead it occurs. will evaporate evenly over the entire area until it is no longer visible.

The second observation is the time required to complete evaporation This is a measurable quantity and a more objective assessment of evaporation rate as a detection method. Assume that а pilot performs an evaporation test with a specific volume of an unknown sample. If the sample is pure avgas it will evaporate within a time. This time specific establishes the lower limit of an interval; the upper limit of which the evaporation time of

volume equal οf contaminated avgas. The interval, referred to the "detection interval" that time after initial application during which the paper must display visible no sign unevaporated fuel if the sample is uncontaminated. Conversely, if the sample is contaminated, visible sign of unevaporated fuel will be the displayed during detection interval. Ιt was necessary establish the upper and lower limits for sample size contamination levels by laboratory analysis. A sample size range of one (0.05 ml.) to five (0.25 ml.)drops and a contamination range of one to five percent were selected to provide evaporation test design data. Fifty samples were evaporated at each combination of sample size and contamination level over the selected ranges.

The acquired data indicates that evaporation of one-drop samples produced detection levels that were too brief to identify jet fuel contamination of avgas. Some the larger samples required more than 20 minutes to completely evaporate where high contamination levels were involved. Obviously, a test of such length is not practical for flightline operations. Small volume with samples contamination levels evaporated much more rapidly and appear to be more practical. Figure 1 describes a typical detection interval.

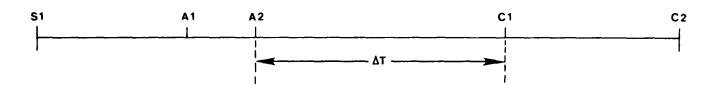


Figure 1. Typical Detection Interval

Where

T = Detection Interval

S1 = Start of Evaporation

AlA2 = Evaporation Range for 50 Samples Avgas ClC2 = Evaporation Range for 50 Samples Contaminated Avgas

If any unevaporated fuel is observed at any time during the detection interval the fuel sample must be considered to be contaminated.

exhibited rapid Pure avqas а evaporation rate and a sharply defined evaporation point. Thus the data (evaporation times) were tightly dispersed about the avgas distribution mean (Ta), forming a sharply peaked distribution curve as shown in Figure 2. In contrast, contaminated fuels evaporated less rapidly and evaporation points were more subtle and difficult to define, resulting in broader distribution about the mean (Tc) and a flatter distribution curve.

These data represent normal а distribution Gaussian and, such, contain a probability of performance and a probability of non-performance, that when added, equals one. Therefore, extending

the probability by using more than one standard deviation has desired effect of increasing the probability of performance even though the detection interval is decreased. If the probability is extended to + or - five standard (99.9999%) deviations then the non-performance probability of 0.000001% becomes (1/1000000). Applying this logic (as shown in Figure 2) allows the selection of time differential that is detection interval (P5) reasonable risk of non-performance (failure to identify contaminated fuel) that is acceptable to the general aviation community. The following equation was derived to evaluate detection intervals:

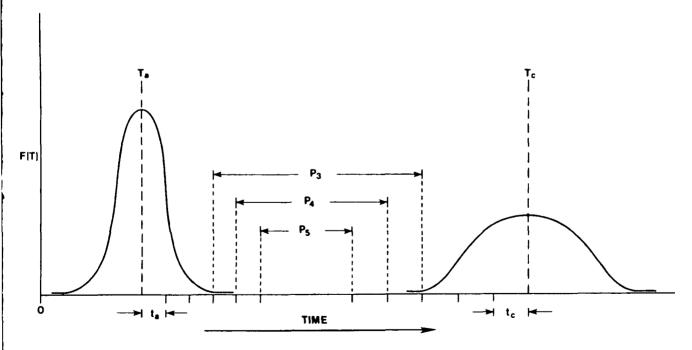


Figure 2. Evaporation Rate Distribution

T = [Tc - P(tc)] - [Ta + P(ta)]

Where:

T = Detection Interval

Ta = Avgas Distribution Mean

Tc = Contaminated Avgas Distribution Mean

ta = Avgas Standard Deviation

tc = Contaminated Avgas Standard Deviation

P = Desired Probability (number of standard deviations)

Detection intervals in Appendix A (A-1) were calculated by use of equation and reflect the effects of varying sample size and contamination levels. Generally, the smaller sample sizes and lower contamination levels furnished intervals. shorter detection of the samples fact, some evaporated rapidly that so negative numbers were generated indicating no available detection time. The length of time required to complete the entire test has parenthesis) included (in since it is a prime consideration in selection οf а suitable detection interval. Ιf the detection interval is subtracted from the total test length, the result is the start time of the detection interval. Use of this data to design an evaporation test is predicated on the knowledge of two requirements: (1)desired sensitivity and (2)total test time. For example, if the user requires identification οf positive contamination in excess of 4% and a test length not to exceed five minutes in duration he is restricted to a sample size of two drops. Any one or either contamination of avgas in greater concentration than that selected Appendix the data in (A1-A2) will provide an indication of that contamination during the selected detection interval.

GAS CHROMATOGRAPHY TEST

Gas chromatography is an analyti-

cal technique that separates compound into its basic components by preferential adsorption to a coated surface. Gas chromatographs are used to analyze a wide variety of compounds and many are designed primarily for laboratory Consequently, they complex and costly. However, these instruments are easily redesigned for specific usage, producing a much simplified and less costly design. A typical example of a specific use gas chromatograph is an instrument utilized by arson identify investigators to fires accelerants used in οf suspicious nature. Such an instrument, specifically designed as a misfueling detection device is recommended for use by the FBO to aid him in maintaining good guality control over refueling operations and to verify the pilot's Evaporation Test in event contamination the suspected.

basic components The οf a chromatograph include an oven, a column, a thermal conductivity detector, a signal conditioner, and an output recorder. The oven temperature may be manually automatically varied, or it may be locked in isothermally which is adequate for misfueling detection. gas chromatography column, a stainless steel tube (3.048m. 0.3175m.), packed with specially particles porous SP-2340 on 80/100 Chromosorb), is contained within the oven. packing absorbs a limited range of

hydrocarbon compounds including those of avgas and jet fuel.

Helium, the carrier gas, flows constantly through the column to the detector and after sufficient time the detector warm-up automatically zero-calibrated. Then a carefully measured fuel sample is injected into the heated input port where it is immediately vaporized. The helium gas transports the vaporized sample through the column where its hydrocarbon adsorbed components are desorbed at different rates. The lighter, more volatile components first and desorbed conseare quently reach the detector before the heavier components. As each of the components passes through the detector it produces an electrical signal proportional to the amount of each component present in each sample. The signal is conditioned to drive a chart recorder that pattern produces a οf of which (chromatogram) each identifies a component of the sample. If test conditions such as sample size, oven temperature, and helium flow are held constant chromatogram repeatability excellent. Thus it is a simple matter to compare an unknown sample with a pure avgas sample to if the jet ascertain components are present.

As stated above, the output from a gas chromatograph is a pattern of peaks known as a chromatogram which is capable of representing each basic component of a complex hydrocarbon compound. Such chromatogram is found in Appendix IV of Attachment B (D-52). It will noted that the basic avgas components appear as a large flattop peak. The chromatogram has been highly amplified to allow the follow to be small peaks that identified thus causing the flattop or overamplification of the

avgas component. The small following peaks indicate the presence of some of the basic components of jet fuel since even pure avgas contains them in minute quantities. The chromatogram obtained from one percent contamination demonstrates the same avgas peak but the jet fuel peaks are increased in amplitude, clearly identifying the increased contamination level. The size of the peaks is directly proportional to the contamination level and the time required to exit the column produce a signal at detector does not vary as long as all conditions are held constant. peaks the are identified as jet fuel components.

Chromatograms of known contamifuels in effect nated are "signatures" with which signature of an unknown sample may compared to determine extent of jet fuel contamination. A gas chromatograph is capable of accurately detecting levels of jet fuel in avgas as low as 1%. Basic operation of the modified instrument is simple and results are highly repeatable. Overall; reliability, brevity, and operational sensitivity, facility of the Gas Chromatograph Test combine to make it a feasible method of maintaining fuel integrity for the FBO"s operations. The method is also a very efficient back-up to confirm the Evaporation Test in the event the pilot of a refueled aircraft recently suspects contamination.

GOW-MAC Instruments Company under contract to NASA, was assigned the task of modifying an existing gas chromatograph to verify the conclusions of this investigation. The modified instrument produced excellent results, verifying the capability of identifying contamination levels of as low as one

percent. It was also equipped with small microcomputer that performed analysis the an of output signal from the and simplified provided user a oriented "go/no go" LED display. The complete report may be found in Attachment B(D-1).

are to be utilized effectively by the aviation community. Since there are no regulations on the use of such devices it is incumbent on the industry to research the marketing of these products to maximize their use in the interest of aviation safety.

CONCLUDING REMARKS

The detection methods described in this report have been researched and verified. This is the extent of the requirements of the Aircraft Misfueling Detection Project and this report represents the final documentation. However, of in the interest aviation safety, an additional observation must be reported.

In the course of this investiga-FBO's, many pilots, aircraft owners were interviewed, resulting in a genuine concern by most for fear of misfueling or being misfueled. However, in some cases, we encountered a cavalier approach to misfueling that leads to dangerous complacency. This was exemplified by some FBO's who were purchasing interested in not detection equipment because they "had never experienced a situation any οf their personnel misfueled aircraft with an Likewise, the question arose quite often as to whether pilots would take the time to use Evaporation Test. attitudes are obviously dangerous in the aviation community where pilots and FBO's are responsible for the personal safety of others. The two tests described in this report have been proven to accomplish the detection of jet fuel contamination of avgas. They are, however, dependent on the attitude of the user. Commercialization of these products must be implemented by the aviation industry if they

APPENDIX A

EVAPORATION TEST

DATA SUMMARY

1 DROP SAMPLE SIZE:

CONTAMINATION		S	SENSITIVITY		
LEVEL	1X	2X -	3 X	4 X	5X
	MIN	MIN	MIN	MIN	MIN
18	* 0.14	0.01		-0.24	-0.36
	**(1.01)	(0.92)	(0.84)	(0.75)	(0.67)
2%	1.14	0.77	0.40	0.02	-0.35
	(2.01)	(1.68)	(1.34)	(1.01)	(0.68)
3%	1.88	1.47	1.06	0.64	0.23
	(2.75)		(2.01)	(1.63)	(1.26)
4 %	3.67	3.24	2.81	2.38	1.94
	(4.54)			(3.36)	
5%	4.83	4.04	3.26	2.47	1.68
				(3.46)	
2 DROP SAMP	LE SIZE:				
1%	0.32	0.12	-0.09	-0.29	-0.50
1 0	(1.43)	(1.29)	(1.14)	(0.99)	(0.85)
2%	3.02	2.24	1.46	0.68	-0.09
2 v	(4.13)		(2.69)	(1.97)	(1.25)
3%	3.76	3.10	2.44	1.78	1.12
	(4.87)		(3.67)	(3.07)	(2.47)
4 %	5.71	5.04	4.37	3.69	3.02
	(6.82)		(5.59)		(4.37)
5%	7.89	7.03	6.17	5.32	4.46
				(6.60)	

^{*} DETECTION INTERVAL LENGTH (MINUTES)

X=STANDARD DEVIATION
(NEGATIVE VALUES INDICATE NO DETECTION TIME AVAILABLE)

^{**} MAXIMUM TEST LENGTH (MINUTES)

3 DROP SAM	IPLE SIZE:				
1%	0.60	0.08	-0.44	-0.96	-1.48
	(1.93)	(1.48)	(1.03)	(0.58)	(0.13)
2%	4.00	3.33	2.67	2.00	1.34
	(5.32)	(4.73)	(4.14)	(3.54)	(2.95)
3%	6.43	5.81	5.18	4.56	3.94
	(7.75)	(7.20)	(6.65)	(6.10)	(5.55)
4%	8.88	7.65	6.41	5.18	3.94
	(10.21)	(9.04)	(7.88)	(6.72)	(5.55)
5 %	10.44	9.07	7.70	6.33	4.97
	(11.76)	(10.47)	(9.17)	(7.88)	(6.58)
4 DROP SAM	IPLE SIZE:				
1%	1.37	0.55	-0.27	-1.08	-1.90
	(3.01)	(2.29)	(1.57)	(0.85)	(0.14)
2%	4.49	3.81	3.14	2.46	1.78
	(6.13)	(5.55)	(4.97)	(4.40)	(3.82)
3%	8.32	7.37	6.41	5.45	4.50
	(9.96)	(9.11)	(8.25)	(7.39)	(6.53)
4 %	15.32	13.95	12.59	11.22	9.86
	(16.96)	(15.69)	(14.43)	(13.16)	(11.89)
5 %	17.89 (19.53)		15.33 (17.17)	14.05 (15.99)	12.77 (14.81)
5 DROP SAMPLE SIZE:					
1%	2.30	1.47	0.64	-0.19	-1.02
	(4.19)	(3.44)	(2.69)	(1.95)	(1.20)
2%	5.23	4.57	3.90	3.23	2.57
	(7.12)	(6.54)	(5.95)	(5.37)	(4.78)
3%	10.45	9.35	8.25	7.15	6.06
	(12.34)	(11.32)	(10.30)	(9.29)	(8.27)
4 %	16.47	15.41	14.35	13.29	12.23
	(18.36)	(17.38)	(16.40)	(15.42)	(14.44)
5%	25.16	23.94	22.72	21.50	20.28
	(27.06)	(25.92)	(24.77)	(23.63)	(22.49)

APPENDIX B

References

- 1. AVCO Lycoming, AVCO Detonation Analyzers-Description, 1980 Williamsport Division, Williamsport, Pennsylvania.
- 2. AVCO Lycoming, AVCO Lycoming Requirements to Conduct an In-Flight Detonation Survey, 1980, Williamsport Division, Williamsport, Pennsylvania.
- 3. National Institute for Petroleum and Energy Research, Inc., <u>Aviation</u> Turbine Fuels, 1984, Bartlesville, Oklahoma.
- 4. National Transportation Safety Board, Briefs of Accidents, U.S. General Aviation, Washington, D.C. (Computer Generated on Demand)
- 5. AOPA Air Safety Foundation, 1981, <u>Detecting Jet Fuel Contamination</u> of Avgas, Safety Bulletin No. 1, Frederick, Maryland.
- 6. Society of Automotive Engineers, Inc., Handbook of Aviation Fuel Properties, 1983, Warrendale, Pennsylvania.
- 7. Obert, Edward F., 1910-, <u>Internal Combustion Engines</u>, 1968, Scranton International Textbook Co.
- 8. National Transportation Safety Board, Accident File Contents, Factual Report, 1978 IAD 78-F-A056, "Aviation Accident/Incident", Washington, D.C.
- 9. National Transportation Safety Board, <u>Accident File Contents</u>, <u>Factual Report</u>, 1984, MKC 84-M-A060, "Aviation Accident/Incident", Washington, D.C.
- 10.Banks, Herbert W. R., National Transportation Safety Board Initial Briefing to the General Aviation Manufacturer's Association, "Improper Fuel Grades.", 1982, National Transportation Safety Board, Field Investigation Division, Washington, D.C.

APPENDIX C

DEVELOPMENT OF A TEST KIT TO DETECT JET FUEL CONTAMINATION OF AVGAS

RUSSELL S. LAWTON
VICE PRESIDENT, OPERATIONS
AOPA AIR SAFETY FOUNDATION
421 AVIATION WAY
FREDERICK, MARYLAND

BACKGROUND

test procedure to identify aviation fuel contaminated with jet fuel was developed and tested Aircraft Misfueling under the Detection Project. Data was collected to quality operational tests that may be used by pilots to detect contaminated aviation gasoline (avgas) prior take-off. Repeated use of a test kit by pilots is highly dependent on the utility and attractiveness of the final configuration for the kit.

The AOPA Air Safety Foundation was asked by NASA/Goddard Space Flight Center/Wallops Flight Facility to design and test the final configuration of this kit among pilots, aircraft owners and fixed-base operators (FBO's). The Air Safety Foundation was well suited for this purpose since it conducts training programs attended by more

than 10,000 pilots and aircraft owners annually.

With respect to the design and evaluation of the test kit, the Air Safety Foundation was asked to:

- (1) Review available accident reports to determine the operational modes that could affect the design of the test kit.
- (2) Conduct a survey of pilots, aircraft owners and
 FBO's to obtain information pertinent to test
 kit design. In addition,
 FBO's were also to be
 surveyed on the feasibility and practically of
 using a gas chromatograph
 detection unit.
- (3) Describe the design of a prototype contamination detection kit.
- (4) Make recommendations for additional testing of the

design parameters if necessary.

(5) Provide design drawings for an operational test kit and instructions for its use.

METHODOLOGY

Accident/Incident Review

Aircraft misfueling accidents and incidents from 1964 to 1983 were reviewed to develop a profile of the typical misfueling situation. These accidents are classified as Improper," Grade include those accidents/incidents where the incorrect type of fuel was used instead of the fuel for which the engine was originally certified, e.g., auto fuel, jet wrong grade, etc. The following data bases were queried to retrieve in order information:

*Federal Aviation Administration (FAA) - Accident/Incident Data System (AIDS)

- *International Civil Aviation Organization (ICAO) - Accident Data Reports (ADREPS)
- *National Aeronautics and Space Administration (NASA) -Aviation Safety Reporting System (ASRS)
- *National Transportation Safety Board (NTSB) - Briefs of Accidents for U.S. General Aviation

The accident/incident reports from the five data bases were compared in order to eliminate duplicate reports. Seventy-seven reports were found under the classification "Fuel Grade - Improper." There were no reported accidents/incidents where single engine aircraft certified to use aviation gasoline were misfueled with jet fuel. The single engine aircraft accidents reviewed were caused due to water contamination and/or the improper use of auto fuel.

The aircraft most often misfueled with jet fuel were twin engine aircraft belonging to a manufacturer's product line utilizing both piston and turbine engines, e.g., Aero Commander and Cessna 400 series. Other twin engine aircraft misfueled with jet fuel were the result of improperly trained flight line service personnel who assumed that the aircraft should be serviced with jet fuel instead of avgas.

The most reliable method detecting jet fuel contamination avgas when utilizing evaporation test is by obtaining a fuel sample from the aircraft fuel tank filler port where the jet fuel may be introduced. The fuel tank filler ports on many of the aircraft involved in misfueling accidents are difficult to access by pilots during normal preflight inspection without the use of a ladder. It was recommended that NASA conduct a test to determine quickly the fuel aircraft tank could contaminated with jet fuel when it was introduced at the filler neck and combined with avgas.

A test was conducted at the Wallops Flight Facility to determine the time required for a two percent by volume sample of jet fuel to completely mix with a container of avgas. Although the two fuels mixed almost instantly within the container, more time would be required for the contaminated fuel to settle into an aircraft fuel strainer and sump system.

Many aircraft utilize multiple fuel tanks and intricate tuel line systems. Therefore, the evaporation test method is most reliable when a fuel sample is obtained from the fuel tank filler port.

Detection Kit Development

Demonstrations of the evaporation test were conducted by Air Safety Foundation staff various at training programs throughout the United States. Approximately 600 pilots and aircraft owners observed the test utilizing laboratory filter paper and avgas samples composed of two percent and five percent levels of jet contamination. Everyone observing the test was impressed with its simplicity and ease of

Those in attendance were asked if they would purchase a kit if the price were under ten dollars. Many stated that they would not purchase the kit if the cost was more than ten dollars.

Considering the feedback received from these people, it is determined that the test kit should be constructed from readily available materials so that it can be produced and sold commercially for less than ten dollars. Other factors that need to be considered in the design of the test kit are:

- * Durability and ease of portability.
- * Ability to withstand temperature extremes.
- * A sufficient quantity of test paper to conduct repeated tests.
- * A method of shielding the test paper from wind since the rate of evaporation is critical in the detection of jet fuel.

The project team believed that most pilots and aircraft owners would not go to a location where laboratory filter paper is sold in order to obtain replacement paper for sampling. Other paper types were evaluated which might be more readily available. A good

substitute found by was using plain white calculator paper which was not treated with any type of pressure sensitive material. This type of paper is both readily available and inexpensive, thereby, being more conducive to frequent use and replacement. Plain white calculator paper made from 12-1b. lightweight bond was evaluated by NASA Goddard Space Flight Center/Wallops Flight Facility and determined to be of consistent quality for repeated evaporation tests.

A box capable of holding a 2-1/4" wide roll of calculator paper was fabricated from 1/8" clear acrylic (Figure 1). The paper roll is ted through a tension device which assures a flat area on the paper tor conducting the test. A 1-1/2" diameter opening on the tension device is used to place the fuel sample on the paper. The tension device is set 3/4" down from the οf the for box protection. A feed slot on the box side allows the used paper to be removed, torn off, and replaced by a clean sample. Once the paper supply is depleted, it can be replaced by turning the box upside down and sliding out the used paper roll. A holder for the eye dropper and attachment line was mounted on the box lid.

Once the prototype test kit was fabricated and refined, demonstrations were conducted at Air Safety Foundation training programs. The pilots and aircraft owners in attendance observed a demonstration of the test kits and were given an opportunity to conduct the test individually. Comments concerning the simplicity and ease usina the test kit extremely positive. Most who participated and/or observed the they demonstration stated purchase the kit if it sold in the

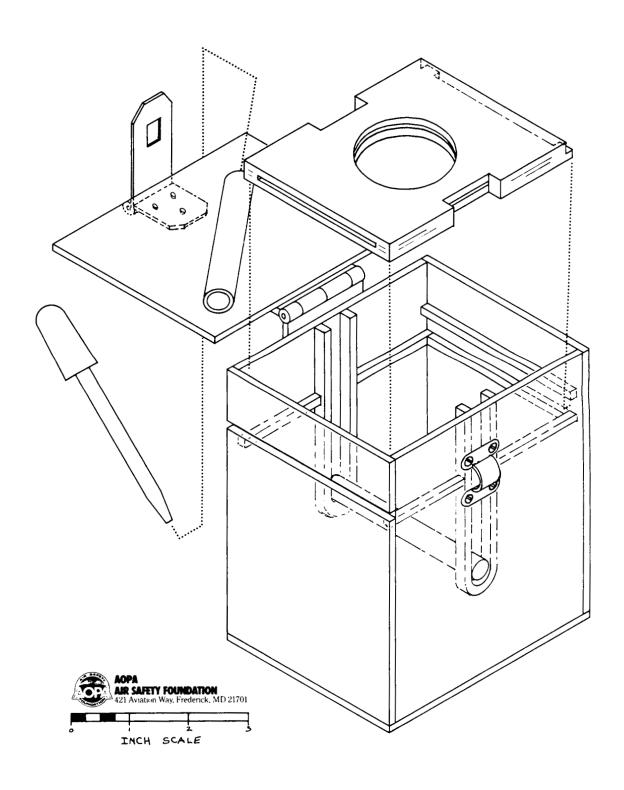


Figure 1.Detection Kit Design

\$10-\$15 price range.

Demonstrations of the prototype test kit were also conducted at ten fixed base operators (FBO's) in the eastern U.S. The FBO staffs observing the demonstrations were impressed that jet contamination could be detected with this simple method. These FBO's were also queried possibility concerning the using a gas chromatograph as a test once positive jet contamination was suspected. Although the FBO personnel were generally in favor of using a more positive indication of jet fuel balked contamination, they at purchasing a \$1500 \$2000 which could only be instrument used for this one test procedure.

FBO's These same expressed purchasing this reticence at equipment since they had never experienced a situation where any of their personnel misfueled an aircraft with jet fuel. The FBO's expressed interest in viewing a demonstration of the gas chromatograph, however a demonstration unit was not available when the survey was conducted.

Design Parameters

The prototype test kit developed by the Air Safety Foundation which described previously detailed in Figure 1 appears to the objectives the in Statement of Work. The test kit is small enough to be carried in the typical pilot's flight case. The essential kit components (paper roll and eye dropper) are easy to inexpensive. Most replace and the test kit importantly, repeatedly detect jet fuel a contamination level of two percent by volume.

The test kit should be constructed from acrylic material of at least 1/8" thickness to withstand normal wear and tear as well as the range of temperatures encountered in aviation operations. Prototype test kits were constructed of 1/16" plastics, but these were not of adequate durability.

The white calculator paper worked as well as the laboratory filter paper in detecting jet contamination of avgas. A roll of calculator paper costs approximately one dollar and is normally 200 feet long. Anyone conducting the test need not be concerned with the expense of the paper, and hopefully, will conduct as many tests as necessary to be confident jet fuel contamination that no exists.

The eye dropper used to obtain the fuel samples is stored on the 11d of the test kit. A nylon line three feet in length attaches the eye dropper to the test kit. The nylon line allows the individual to retrieve the eye dropper in the event it is dropped into the fuel tank while obtaining a fuel sample for the test.

Recommendations

The Air Safety Foundation does not believe that any further testing development and/or of prototype jet fuel contamination detection kit is required. The evaporation test method detecting jet fuel contamination avqas has been thoroughly tested and documented by NASA. The prototype test kit developed by the Air Safety Foundation with the assistance of the NASA Goddard Space Flight Center/Wallops Flight Facility meets the objectives for detecting jet fuel contamination on a repeated basis.

Instructions for Use of Test Kit

The recommended construction for the test kit is detailed in Figure 2. The following procedure should be followed when using the kit during preflight inspection:

- (1) Remove the eye dropper from holder and unwind nylon line to full length (approximately three feet).
- (2) Using the eye dropper, obtain a fuel sample from the fuel tank opening.
- (3) Place two drops of the fuel on the flat surface of the paper contained in the 1-1/2" circular opening in the test kit. A spot about the size of a quarter should be tormed.
- (4) Observe the outside of the spot as it dries. Pure avgas will evaporate from the outside moving inward, leaving the outer margin indistinct. After approximately two minutes, pure avgas will disappear completely, leaving no signs of a spot, having completely disappeared.
- (5) Jet fuel contaminated avgas will show a distinct perimeter on the paper, and fade only after several minutes. The jet fuel will often leave a filmy substance on the paper which is easily observed when held up to a light source.
- (6) Remove the used paper sample from the side of the box and tear off. If contamination is suspected, repeat the procedure using a sample of the suspect fuel. Remove the test paper and save. Obtain a sample of pure

avgas and place on clean test paper. Compare the evaporation rates for the two samples. If the pure avgas sample evaporates more quickly, the suspect sample may be contaminated.

Figure 2. Details of Design Specifications

REFERENCES

Accident Data Reports, International Civil Aviation Organization, Montreal, Quebec, Canada.

Briefs of Accidents, U.S. General Aviation, National Transportation Safety Board, Washington, D.C.

"Contamination of Aviation Gasoline with Heavier Fuels." American Society of Testing and Materials.

"Detecting Jet Fuel Contamination of Avgas," Safety Bulletin #1. AOPA Air Safety Foundation, Frederick, Maryland.

"General Aviation Accidents Involving Misfueling as a Cause or Factor." Federal Aviation Administration, Safety Analysis Division, Washington, D.C.

"Substitution of Jet Fuel for Avgas," Search Request No. 808. Aviation Safety Reporting System, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California. APPENDIX D

MODIFICATION TO A GAS CHROMATOGRAPH

TO DETECT JET FUEL CONTAMINATION OF AVIATION GASOLINE

(STATEMENT OF WORK # 824-477381620)

FOR: NASA, GODDARD SPACE FLIGHT CENTER WALLOPS FLIGHT FACILITY WALLOPS ISLAND, VIRGINIA

Prepared By:
GOW-MAC Instrument Co.
X.F. Gonzalez, Consultant

ABSTRACT

conductivity qas chromatograph in conjunction with a Signal Processing Module capable of detecting one percent jet fuel peak contamination has been The Signal successfully tested. Processor accepts the gas chromatograph signal and utilizes an algorithm implemented with a microcomputer to single chip the analysis ο£ perform the aviation fuel. An LED display single START/STOP switch provides simplified user oriented "go/no go" analysis. The use of a microcomputer allows for adjustment of retention time zones and peak value threshold. The software written allow been to fuel other upgrading to detect contamination.

INTRODUCTION

The detection of jet fuel contamination of aviation gasoline has been successfully demonstrated in the chemistry laboratory at GSFC/WFF. Tests conducted under the Aircraft Misfueling Detection Project have detected concentrations as low as I percent by use of a laboratory type gas chromatograph. However the interpretation of the resulting output limits the flightline use of the instrument.

This project adapts the chromatograph output for use by the fixed base operator (airport manager). modification instrument designed is a Signal Processing provides a visual Module that fuel sample the indication of analysis. The instrument system has been successfully tested at GOW-MAC Instrument Company over ranges of 50% to 1% jet fuel contaminations as well as 0% jet fuel contamination.

OVERALL SYSTEM CONFIGURATION

system consists of a dual column gas chromatograph (GOW-MAC 69-5590), a carrier Model cylinder, and Signal Processor Module. Figure 1 illustrates the basic system. The columns on the chromatograph have selected to separate the aviation tuel and the jet fuel components specific conditions. aviation fuel sample to be tested injected into the injection port where it vaporizes and is carried by the carrier gas. The vaporized sample of aviation fuel and any jet fuel contamination are separated in the column. separate components are passed through the thermal conductivity detector which senses the relative conductivity of thermal Αn electrical component gases. signal, proportional to the thermal conductivity of each is generated component, as passes through a resistance bridge detector.

The Signal Processor Module is a specially designed unit that utilizes the detectors electrical signal to determine if the aviation fuel peak occurs at the correct time and if there is any jet fuel contamination present.

SIGNAL PROCESSOR MODULE (HARDWARE DESCRIPTION)

A typical chromatograph of 1% contaminate is shown in Figure 2. The main peak due to aviation fuel has a retention time of 1 minute and a peak that exceeds 1 millivolt. The main peak of the jet fuel contamination has a retention time of approximately 2 minutes and a peak in the order of 0.035 millivolts. The system used to detect the contaminate is shown in Figure 3. The system consists of a

single chip microprocessor (Intel 8751), a 12 bit Digital to Analog Converter (DAC), highly specialized analog operational amplifiers and visual display via drivers. A microprocessor was chosen to provide future flexibility to detect other contaminates that may be present in the aviation fuel. Additionally, retention time zones and signal threshold constants can be adjusted by changing constants in Read Only Memory(ROM).

The DAC in conjunction with the microprocessor is configured into a tracking analog to digital converter (ADC). The ADC loop is controlled by a comparator capable of sensing 10 microvolt differences zero. This sensitive comparator had to be made from a high gain amplifier (OPO6). The output of OPO6 is used to saturate a comparator (LF311). The digital signal out of the LF311 comparator goes into a microprocessor input port and is used to indicate the polarity (within signal microvolts).

The gas chromatograph signal from the bridge circuit is fed into a balanced summing amplifier (OPO7). balanced DAC output injected into the amplifier so as to null out the bridge voltage. the comparator output of indicates to the processor direction that the DAC must be driven in order to null the detecsignal. The microprocessor updates the DAC at a 0.25 millisecond rate in an attempt to null the amplifier. The DAC will easily low frequency track the (10hz bandwidth) gas chromatography signals and high frequency noise will average zero.

The microprocessor controls the eight display LEDs. A group of five LEDs are used to assist the operator in zeroing the bridge. A

push button is used to activate the timing cycle to measure the sample retention time. The push button can also be used to abort the timing cycle. The timing cycle is shown in Figure 4. The RUN LED is used to indicate the status of the timing cycle. When the timing cycle is active the RUN LED is on. When the timing cycle is completed the analysis of the sample finished and the RUN LED blinks. To reset the timing cycle the push button is pressed and the RUN LED goes off. Two more LEDs indicate a pass or failed condition after the analysis is completed. Refer to the schematic in Appendix I for a more detailed circuit.

SIGNAL PROCESSOR MODULE (SOFTWARE DESCRIPTION)

Refer to Figure 5 for a flow chart description of the software driver. A description of each procedure follows:

- 1. TIC COUNT:
 - Is a real time interrupt procedure used to keep track of time. It also passes tokens to the main program to activate procedures in the main program.
- 2. DAC UPDATE:
 - Test the "signal polarity" input port. It determines the sense of the detector signal and outputs a 12 bit digital signal to the DAC in opposition to the sensed signal in order to null the detector's bridge signal. An internal count of the DAC value (DAC-COUNTER) is maintained and updated during this procedure.
- 3. SWITCH:

This routine will sample the START/STOP switch input port. Toggles the "START" flag used internally to start a run or to abort a run.

4. TIME:

Maintains the internal flags and initializes internal flags.

5. LITE:

This routine maintains the output display. The zero adjustment routines help the operator zero the bridge. When the bridge signal is zero the green LED will be turned on. Two yellow LEDs (one positive and the other negative off zero conditions) indicate a slightly off zero condition. Two red LEDs (one positive and the other negative off zero condition) indicate that the operator must adjust the bridge zero before starting. If either of the two RED LEDs are blinking it indicates that the zero is out of the DAC range and must be zeroed before starting. The RUN LED is:

- A. Off if START flag has not been activated.
- B. On if START flag has been activated.
- C. Blinks if the run is completed.

 The Pass and Fail LEDS indicate the result of the analysis at the completion of the run.

6. ZONE:

When the START flag is activated a RUN-COUNTER keeps track of the time. This counter is used to maintain 5 zones used to measure retention time.

- A. ZONE 0 STOPPED
 B. ZONE 1 0 to 30
 seconds
- C. ZONE 2 30 to 90 seconds

(avgas fuel peak expected)

- D. ZONE 3 90 to 150 seconds (contamination peak, if any, expected)
- E. Zone 4 > 150 seconds
 (run completed)

7. ANALYSIS;

The analysis procedure is used to detect:

- A. The aviation fuel peak during the Zone 2 interval.
- B. Any contamination peaks during Zone 3 interval.

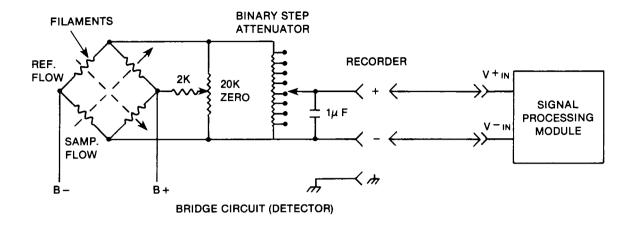
The detection of the aviation fuel is done by comparing the DAC-COUNTER (value) during Zone 2. If the DAC-COUNTER exceeds a given constant then the aviation fuel peak has been sensed.

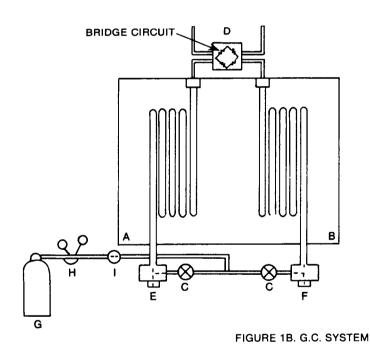
This constant is an absolute value and is chosen very near the maximum DAC value. The detection of the contamination is performed by integrating, during the time Zone 3, the detector signal. If this integral exceeds a predetermined constant (selected at 1% contamination for this unit) then a FAIL-ed condition is flagged.

The flow indicates chart the execution sequence of the described procedures. A more precise supplied documentation is Appendix II which provides the PLM source and the subsequent assembler code that has been generated.

SIGNAL PROCESSOR OPERATION

An operator would proceed as follows:


- 1. Set up the G.C. to the given operating conditions (see Appendix III) and wait 30 minutes for the G.C. temperature to stabilize.
- 2. Zero the detector by ob-


- serving the zeroing LEDs. Adjust the zero until in the green or either yellow LED is on.
- 3. Check the RUN, PASS, and FAIL LEDs. These LEDs should be off. If not, depress the START/STOP switch to abort the run and prepare for a new start.
- 4. Obtain a sample of the fuel mixture to be tested and inject it into the injection port.
- 5. Immediately press the START/STOP button to start the analysis. The yellow RUN LED will come on.
- 6. A the end of the run (150 seconds) the yellow LED will blink indicating the end of the run. The PASS or the FAIL LED will be activated as the result of the analysis.

TESTING

Testing of the Signal Processing Module was conducted over several days. Aviation fuel samples with jet fuel contamination from 1% to 50% were tested successfully. Also tested successfully were the pure samples of aviation fuel. Recorder output of the tests are provided in Appendix IV. From these tests it appears that a GOW-MAC Model 550 gas chromatograph in conjunction with the modification is capable of detecting low level contaminations.

FIGURE 1A. DETECTOR ELECTRICAL OUTPUT

- A. COLUMN "A"
- B. COLUMN "B"
- C. METERING VALVES (2) "A" &"B"
- D. DECTECTOR BLOCK
- E. INJECTION PORT FOR COLUMN "A"
- F. INJECTION PORT FOR COLUMN "B"
- G. HELIUM TANK
- H. PRESSURE REDUCTION VALVE
- I. PRESSURE SWITCH

Figure 1. Basic System

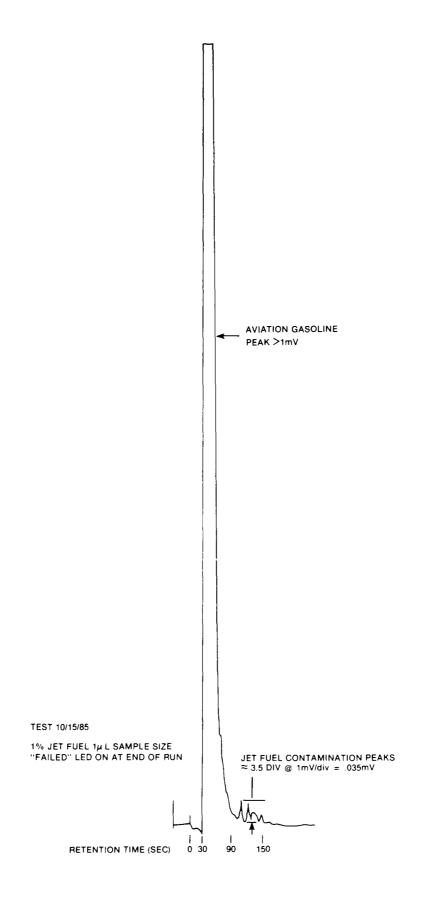


Figure 2. 1% Jet Fuel Contamination of Aviation Gasoline Chromatography Profile

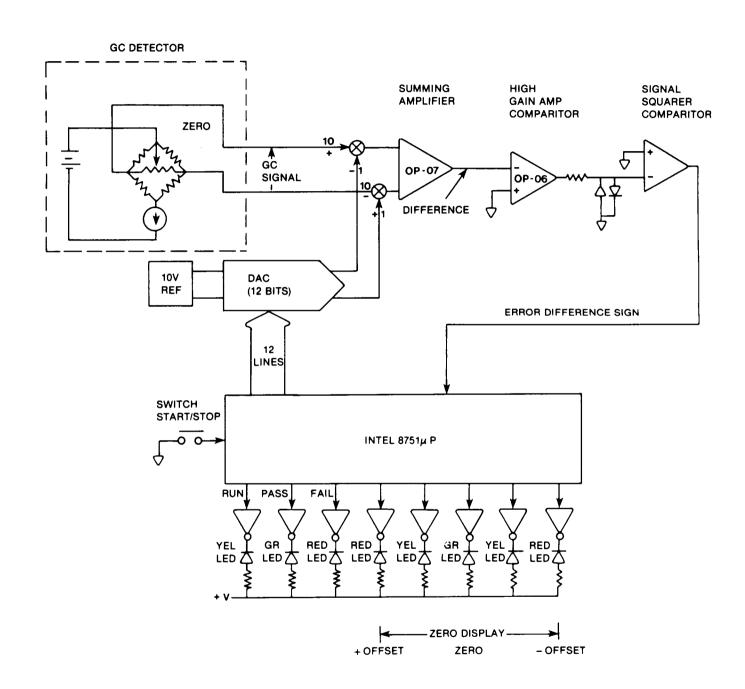


Figure 3. Aviation Fuel Contamination Signal Processor

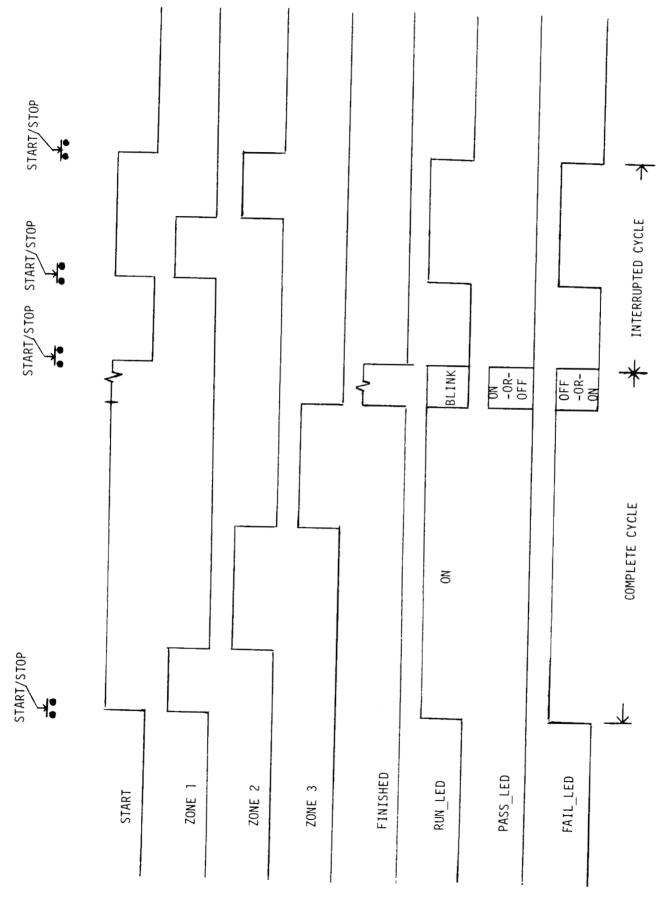
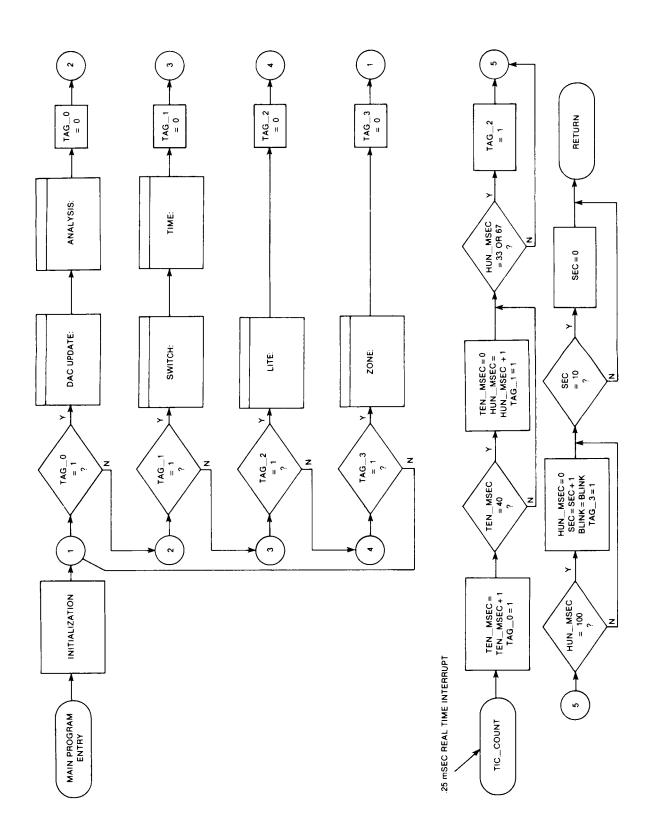
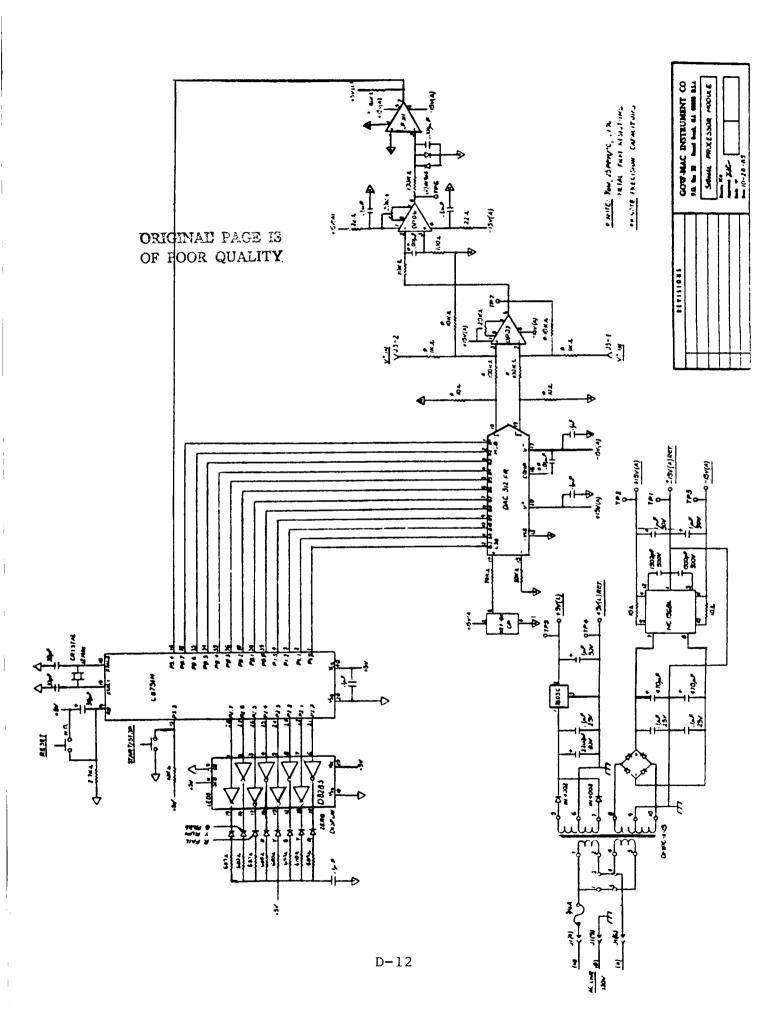




Figure 4. Timing Cycle

APPENDIX I

SIGNAL PROCESSOR SCHEMATIC

APPENDIX II

SOFTWARE:

- 1. SOURCE PROGRAM & ASSEMBLY LEVEL PROGRAM 2. RELOCATOR & LINKER

ISIS-II PL/M-51 V1.1 COMPILER INVOKED BY: PLM51 NASOO.PLM DATE(9/15/85) DB OJ SB CO XREF

```
/*
    /*
            NASA AVIATION FUEL CONTAMINATION SOFTWARE
    /*
                                                              */
               BY: X. F. GONZALEZ
1
                               /*DECLARATION I/O REGISTERS FOR B051*/
     1
         NASA00: DO;
         DECLARE DCL LITERALLY 'DECLARE';
2
     1
3
     1
         DCL PORT 0
                              BYTE AT(80H) REGISTER;
4
                              BYTE AT(81H) REGISTER;
     1
         DCL SP
5
         DCL TCON
                              BYTE AT(88H) REGISTER;
     1
         DCL TMOD
                              BYTE AT (89H) REGISTER;
6
     1
7
         DCL SCON
                              BYTE AT (98H) REGISTER;
     1
8
     1
         DCL IE
                              BYTE AT(OA8H) REGISTER;
                              BYTE AT(0B8H) REGISTER;
9
         DCL IP
     1
10
         DCL PORT 1 BIT 0
                                    AT(90H) REGISTER;
     1
                              BIT
11
     1
         DCL PORT 1 BIT 1
                              BIT
                                    AT(91H) REGISTER;
         DCL PORT 1 BIT 2
                              BIT
                                    AT(92H) REGISTER;
12
         DCL PORT 1 BIT 3
                                   AT(93H) REGISTER;
13
     1
                              BIT
         DCL HI_RED_LED
                                                        /*P2.0*/
14
     1
                              BIT
                                    AT (OAOH) REGISTER;
15
         DCL HI YEL LED
                              BIT
                                   AT(0AlH)REGISTER;
                                                        /*P2.1*/
     1
                                                       /*P2.2*/
16
     1
         DCL ZERO GRN LED
                              BIT
                                   AT(0A2H)REGISTER;
         DCL LO YEL LED
                                   AT(0A3H)REGISTER;
                                                        /*P2.3*/
17
     1
                              BIT
         DCL LO RED LED
                                                        /*P2.4*/
                              BIT
                                    AT(0A4H) REGISTER;
18
     1
         DCL FAIL LED
                                                        /*P2.5*/
19
                              BIT
                                   AT(0A5H)REGISTER;
         DCL PASS LED
                                   AT (OA6H) REGISTER;
                                                        /*P2.6*/
20
     1
                              BIT
         DCL RUN LED
                                                        /*P2.7*/
21
                              BIT
                                   AT(0A7H)REGISTER;
     1
                                                       /*ENABLE INTERRUPTS*/
         DCL EA
22
                              BIT
                                   AT(OAFH)REGISTER;
     1
                                   AT(0B3H)REGISTER; /*P3.3*/
         DCL START STOP SW
                              BIT
23
     1
         DCL DAC_COMP BI
DCL DAC_COUNTER WORD;
                                                       /*P3.4*/
24
                              BIT
                                   AT (OB4H) REGISTER;
     1
25
     1
         DCL PEAK COUNTER WORD;
26
         DCL RUN COUNTER WORD;
27
     1
         DCL TEMPER WORD WORD;
28
     1
29
         DCL DAC MAX COUNT
                                WORD CONSTANT (OFFFH);
     1
30
         DCL PEAK I
                                WORD CONSTANT (OFFFFH);
     1
         DCL PEAK 2
                                WORD CONSTANT (OEFFH);
31
     1
32
         DCL PEAK 3
                                WORD CONSTANT (00FFH);
     1
33
     1
         DCL WINDOW 1
                                WORD CONSTANT (0700H);
         DCL WINDOW 2
                                WORD CONSTANT (07F0H);
34
     1
         DCL WINDOW 3
                                WORD CONSTANT (080FH);
35
     1
         DCL WINDOW 4
                                WORD CONSTANT (08FFH);
36
     1
                                WORD CONSTANT (OFFFH);
37
     1
         DCL WINDOW 5
         DCL TIME 1
                                WORD CONSTANT (001EH);
38
     1
                                WORD CONSTANT (005AH);
39
         DCL TIME 2
     1
40
                                WORD CONSTANT (0096H);
         DCL TIME 3
                                WORD CONSTANT (00C8H);
41
         DCL TIME 4
     1
```

```
42
      1
          DCL TEN MSEC
                             BYTE;
43
      1
          DCL HUND MSEC
                             BYTE;
44
      1
          DCL SEC
                             BYTE:
45
      1
          DCL WINDOW
                             BYTE;
46
      1
          DCL ZONE I
                             BYTE;
47
          DCL UP DNNOT FLAG
                                 BIT;
48
      1
          DCL TAG 0 INTR3
                                 BIT;
49
          DCL TAG 1 INTR3
      1
                                 BIT;
50
          DCL TAG 2 INTR3
      1
                                 BIT:
51
      1
          DCL TAG 3 INTR3
                                 BIT;
52
      1
          DCL BLINK
                                 BIT;
53
      1
          DCL START
                                 BIT;
54
      1
          DCL START N
                                 BIT;
55
      1
          DCL START P
                                 BIT;
56
      1
          DCL RUN
                                 BIT:
57
      1
          DCL FINISH
                                 BIT;
58
      1
          DCL ZONE 1
                                 BIT;
59
          DCL ZONE 2
      1
                                 BIT;
60
      1
          DCL ZONE 3
                                 BIT;
61
      1
          DCL ZONE 4
                                 BIT;
          DCL FAIL ZONE 1
62
     1
                                 BIT;
          DCL PASS ZONE 2
63
      1
                                 BIT;
64
          DCL FAIL ZONE 3
                                 BIT;
              /*STRUCTURE TO OVERLAY BYTE ONTO BITS*/
65
          DCL TEMPOR BIT STRUCTURE ((B0,B1,B2,B3,B4,B5,B6,B7) BIT);
66
     1
          DCL TEMPOR BIT OVR BYTE AT ( .TEMPOR BIT );
              $EJECT
67
      2
          TIC COUNT:
                        PROCEDURE INTERRUPT 3 USING 0;
                  /*USE 12 M HZ CLOCK TO OBTAIN .25 M SEC PER INTERRUPT */
68
     2
                   TEN MSEC=TEN MSEC +1;
69
      2
                   TAG 0 INTR3=\overline{1};
70
     2
                   IF \overline{\text{TEN}} MSEC = 40 THEN
71
     3
72
     3
                      TEN MSEC = 0:
                      HUN\overline{D} MSEC = HUND MSEC + 1;
73
     3
                      TAG \overline{1} INTR3=1;
74
     3
75
     3
                      IF (HUND MSEC=33) OR (HUND MSEC=67) THEN
                                              TAG 2 INTR3=1;
77
     3
                      IF HUND MSEC =100 THEN
78
                     DO;
     4
79
     4
                          HUND MSEC = 0;
80
                          SEC = SEC + 1;
81
     4
                          TAG 3 INTR3=1;
82
     4
                          BLINK = NOT BLINK;
83
                          IF SEC = 10 THEN SEC = 0;
     4
85
     4
                     END;
86
     3
                 END;
87
          END TIC COUNT;
     1
```

\$EJECT

```
88
     2
         DAC UPDATE: PROCEDURE;
89
              UP DNNOT FLAG = DAC COMP;
              IF UP DNNOT FLAG = \overline{1} THEN
90
91
                  IF DAC COUNTER >= DAC MAX COUNT THEN
92
                  DAC COUNTER = DAC MAX COUNT;
93
     3
                  ELSE DAC COUNTER = DAC COUNTER + 1;
94
     3
95
     3
              END;
     2
              ELSE
96
              DO;
                  IF DAC COUNTER = 0000H THEN
97
98
     3
                  DAC COUNTER = 0000H;
                  ELSE DAC COUNTER = DAC COUNTER - 1;
99
     3
100
     3
              END:
              /*OUTPUT TO DAC*/
101
              DO;
     3
              /*OUTPUT MS BYTE TO DAC*/
              TEMPOR WORD = SHL (DAC COUNTER, 4);
102
     3
              PORT 0 = HIGH ( TEMPOR WORD );
103
              /*OUTPUT LS BITS TO DAC*/
             TEMPOR BIT OVR = LOW ( TEMPOR WORD);
104
             PORT 1 BIT 3 = TEMPOR BIT.B7;
105
             PORT 1 BIT 2 = TEMPOR BIT. B6;
106
     3
              PORT | BIT | = TEMPOR BIT.B5;
107
              PORT 1 BIT 0 = TEMPOR BIT.B4;
108
109
              END;
110
     1
         END DAC UPDATE;
         ANALYSIS: PROCEDURE;
111
         /*THIS PROCEDURE PERFORMS THE ANALYSIS WITHIN EACH DESIGNATED
                                                           TIME ZONE*/
                  DO CASE ZONE I;
112
     3
113
                  ; /*ZONE 0; AWAITING START*/
                  DO; /*ZONE 1; NO PEAKS EXPECTED WITHIN ZONE*/
114
                   1F ZONE 1=0 THEN
115
                      DO;/*ZONE 1 INITIALIZATION*/
116
                           ZONE 1 = 1;
117
118
                      END;
     5
                   IF DAC COUNTER > PEAK 1 THEN FAIL ZONE 1 =1;
119
     4
                  END; /*ZONE 1*/
121
                  DO; /*ZONE 2; MAIN PEAK MUST BE WITHIN ZONE*/
122
123
                   IF ZONE 2=0 THEN
                      DO; /*ZONE 2 INITIALIZATION*/
124
     5
                               ZONE 1=0;
125
     5
                                    D - 16
```

```
126
     5
                           ZONE 2=1;
127
     5
                       END;
                   IF DAC COUNTER > PEAK 2 THEN PASS_ZONE_2=1;
128
130
     4
                   END; /*ZONE 2*/
131
     4
                   DO; /*ZONE 3; NO PEAKS EXPECTED WITHIN ZONE*/
132
     4
                    IF ZONE 3=0 THEN
133
     5
                        DO; /*ZONE 3 INITIALIZATION*/
134
     5
                           ZONE 2=0;
135
     5
                           ZONE 3=1;
136
                           PEAK COUNTER=0000H;
     5
137
     5
                        END;
                   /*MAINTAIN PEAK COUNTER*/
                   IF UP DNNOT FLAG = 1 THEN
138
     4
139
                      DO;
     5
140
     5
                       IF PEAK COUNTER < OFFFFH THEN
141
                       PEAK COUNTER = PEAK COUNTER + 1;
     5
142
     5
                      END;
143
                   ELSE
                      DO;
144
     5
                      IF PEAK COUNTER > 0000H THEN
145
     5
                      PEAK COUNTER = PEAK COUNTER - 1;
146
     5
                      END;
147
                   IF PEAK COUNTER > PEAK 3 THEN FAIL ZONE 3 =1;
149
                  END: /* ZONE 3*/
150
                  DO; /*ZONE 4; STOP*/
151
                   IF ZONE 4=0 THEN
     4
                      DO; /*ZONE 4 INITIALIZATION*/
152
     5
153
                      ZONE 3=0;
     5
154
     5
                      ZONE^{-}4=1;
155
     5
                      END;
156
     4
                  END; /*ZONE 4*/
157
     3
              END; /*DO CASE*/
158
        END ANALYSIS;
159
     2
        SWITCH: PROCEDURE;
              /*THIS ROUTINE SAMPLES THE START STOP SW FOR CLOSURE.
                THE START FLAG IS TOGGLED ON A LOW TO HIGH TRANSITION OF
                THE SWITCH. DEBOUNCE IS PROVIDED BY CALLING THIS ROUTINE
                AT 10 M SEC INTERVALS.*/
160
        START N=START STOP SW;
161
        IF START N=1 AND START P=0 THEN START=NOT START; /*TOGGLE
                                                              START*/
163
        START P=START N; /*SAVE NEW SWITCH VALUE*/
164
     1
        END SWITCH;
     2
165
        TIME: PROCEDURE;
        /*THIS ROUTINE MAINTAINS THE TIMING FLAGS USED TO CONTROL
          THE RUNNING OF THE PROGRAM*/
166
     2
                  IF START=0 THEN
167
     3
                      DO;
```

```
168
                          RUN=0:
169
                          FINISH=0;
170
     3
                          ZONE 1=0;
                          ZONE 2=0;
171
     3
172
                          ZONE 3=0:
                          ZONE 4=0;
173
174
     3
                          ZONE I=0;
175
                      END;
                  IF (START=1) AND (RUN=0) AND (FINISH=0) THEN
176
177
178
     3
                          FAIL ZONE 1 = 0;
179
                          PASS ZONE 2 = 0;
                          FAIL ZONE 3 = 0;
     3
180
                          RUN \overline{COUNTER} = 0000H;
181
     3
                          RUN = 1;
182
183
                      END:
               IF (START=1) AND (RUN=1) AND (ZONE 4=1) THEN
184
     2
185
                    DO; /*FINISH*/
                        FINISH = 1;
186
                        RUN = 0;
187
     3
188
                    END:
             END TIME;
189
190
    2
             LITE: PROCEDURE;
          /*THIS ROUTINE MAINTAINS THE LED OUTPUT DISPLAY. THE FIRST
            PORTION IS USED TO HELP ZERO THE BRIDGE. WHEN THE BRIDGE IS
            ZERO THE GREEN LED WILL BE ON. TWO MORE BANDS (YELLOW, RED)
            ARE USED TO INDICATE THE MAGNITUDE AND DIRECTION (HI, LO)
            OF THE OFFSET FROM ZERO. TO START THE RUN THE GREEN LED
            MUST BE ON INDICATING THAT THE BRIDGE HAS BEEN ZEROED. THE
            OTHER PORTION OF THE ROUTINE MAINTAINS THE RUN, FAIL, AND
            PASS LED'S*/
191
             WINDOW = 6;
             IF DAC COUNTER=0 THEN WINDOW=WINDOW-1;
192
     2
194
             IF DAC COUNTER < WINDOW 1 THEN WINDOW=WINDOW-1;</pre>
             IF DAC COUNTER < WINDOW 2 THEN WINDOW=WINDOW-1;
196
     2
             if DAC COUNTER < WINDOW 3 THEN WINDOW = WINDOW - 1;</pre>
198
             IF DAC COUNTER < WINDOW 4 THEN WINDOW=WINDOW-1;
200
             if DAC COUNTER < WINDOW 5 THEN WINDOW=WINDOW-1;</pre>
202
             IF DAC COUNTER = OFFFH
                                       THEN WINDOW=WINDOW;
204
             DO CASE WINDOW;
206
                  DO; /*CASE 0- VALUE AT MINIMUM*/
207
                      LO RED LED=BLINK; /*BLINK LOW RED LED*/
208
                      LO YEL LED=0;
209
                      ZERO GRN LED=0;
210
                      HI YEL LED=0;
211
                      HI RED LED=0;
212
213
                 END;
                 DO; /*CASE 1- VALUE BETWEEN MINIMUM AND WINDOW 1*/
214
                      LO RED LED=1; /*LOW RED LED ON*/
215
                      LO YEL LED=0;
216
```

```
217
                      ZERO GRN LED=0;
218
                      HI YEL LED=0;
     4
219
                      HI RED LED=0:
                  END;
220
221
                  DO;
                       /*CASE 2- VALUE BETWEEN WINDOW 1 AND WINDOW 2*/
222
     4
                      LO RED LED=0;
223
                                     /*LOW YELLOW LED ON*/
                      LO YEL LED=1:
224
                      ZERO GRN LED=0;
225
     4
                      HI YEL LED=0;
226
                      HI RED LED=0;
227
                  END;
                       /*CASE 3- VALUE BETWEEN WINDOW 2 AND WINDOW 3*/
228
                  DO;
229
                      LO RED LED=0;
     4
230
                      LO YEL LED=0;
                      ZERO GRN LED=1;
                                         /*WITHIN ZERO LIMITS*/
231
     4
232
                      HI YEL LED=0;
     4
233
     4
                      HI RED LED=0;
234
                  END:
235
     4
                  DO;
                       /*CASE 4- VALUE BETWEEN WINDOW 3 AND WINDOW 4*/;
236
     4
                      LO RED LED=0;
237
                      LO YEL LED=0;
                      ZERO GRN LED=0;
238
     4
                                       /*HI YELLOW LED ON*/
239
     4
                      HI YEL LED=1;
240
     4
                      HI RED LED=0;
241
                  END;
                       /*CASE 5- VALUE BETWEEN WINDOW 4 AND WINDOW 5*/
242
                  DO;
                      LO RED LED=0;
243
     4
244
                      LO YEL LED=0;
245
                      ZERO GRN LED=0;
                      HI YEL LED=0;
246
     4
                                            /*HI RED LED ON*/
247
     4
                      HI RED LED=1;
248
                  END;
249
                  DO; /*CASE 6- VALUE AT MAXIMUM*/
250
     4
                      LO RED LED=0;
251
                      LO YEL LED=0;
252
                      ZERO GRN LED=0;
253
                      HI YEL LED=0;
     4
                      HI RED LED=BLINK; /*BLINK HI RED LED*/
254
     4
255
     4
                  END;
256
             END; /*DO CASE*/
                  /* RUN LED CONTROL*/
257
     2
                  IF START=0 THEN RUN LED=0;
     2
                  IF (RUN=1) AND (START=1) THEN RUN LED=1;
259
261
     2
                  IF (FINISH=1) AND (START=1) THEN RUN LED=BLINK;
                  /*FAIL LED CONTROL*/
                  IF START=0 THEN FAIL LED=0;
263
     2
                  IF(START=1) AND (FIN\overline{I}SH=0) THEN
265
     2
266
     2
                      FAIL LED=FAIL ZONE 1 OR FAIL ZONE 3;
267
     2
                  IF FINISH=1 THEN
                      FAIL_LED=FAIL_ZONE_1 OR FAIL ZONE 3 OR NOT
268
     2
                                      PASS ZONE 2;
```

```
/* PASS LED CONTROL*/
                IF START=0 THEN PASS LED=0;
269
                IF (START=1) AND (FINISH=0) THEN
271
                    PASS LED=PASS ZONE 2;
272
    2
                IF FINIS\overline{H}=1 THEN
273
274
    2
                    PASS LED=NOT FAIL LED;
275 1
            END LITE;
         $EJECT
276
    2
             ZONE: PROCEDURE;
            /*THIS PROCEDURE MAINTAINS THE RUN COUNTER AND ESTABLISHES
            A TIME ZONE WHICH IS USED BY THE ANALYSIS PROCEDURE.*/
277
                IF RUN=1 THEN
                    DO;
278
                        IF RUN COUNTER < TIME 4 THEN ZONE I=4;
279
    3
                        IF RUN COUNTER < TIME 3 THEN ZONE I=3;
281
                        IF RUN COUNTER < TIME 2 THEN ZONE I=2;
283
    3
                        IF RUN COUNTER < TIME 1 THEN ZONE I=1;
    3
285
                        RUN COUNTER=RUN COUNTER+1;
287
    3
288
289
            END ZONE;
         $EJECT
          /***************
                    RESET ENTRY
                                 ******
                 /*INITIALIZATION*/
                      /*SET UP STACK POINTER*/
290
            SP=6FH;
            TMOD=00010011B; /*SET UP TIMER/COUNTER MODE REGISTER*/
291
            TCON=01000000B; /*SET UP TIMER/COUNTER CONTROL/STATUS
292
                                             REGISTER*/
                             /*SET UP SERIAL PORT CONTROL/STATUS
            SCON=00000000B;
293
                                           REGISTER*/
            IP=00011111B;
                             /SET UP INTERRUPT PRIORITY REGISTER*/
294
                             /SET UP INTERRUPT ENABLE REGISTER*/
            IE=00001000B;
295
    1
            EA=1:
                    /*ENABLE INTERRUPTS*/
296
297
            START=0; /*INITIALIZE RUNNING PROGRAM*/
             ZONE I=0;
298
            DAC \overline{C}OUNTER = 0000H;
299
          /************
                    /*MAIN PROGRAM*/
                             /*DO BLOCK FOREVER*/
300
     2
             DO WHILE 1;
                DO WHILE TAG 0 INTR3=1; /*THIS DO LOOP IS DONE ONCE
301
                           EVERY .25 MSEC*/
```

```
302
     3
                    CALL DAC UPDATE:
303
     3
                    CALL ANALYSIS;
304
     3
                    TAG O INTR3=0;
305
     3
                   END:
306
     3
                   DO WHILE TAG 1 INTR3=1;
                                              /*THIS DO LOOP IS DONE ONCE
                                                  EVERY 10 MSEC*/
307
     3
                    CALL SWITCH;
308
     3
                    CALL TIME;
309
     3
                    TAG 1 INTR3=0;
310
     3
                   END;
311
     3
                   DO WHILE TAG 2 INTR3=1;
                                              /*THIS DO LOOP IS DONE ONCE
                                                 EVERY 330 MSEC*/
312
     3
                    CALL LITE;
313
     3
                    TAG_2_INTR3=0;
314
     3
315
     3
                   DO WHILE TAG 3 INTR3=1;
                                              /*THIS DO LOOP IS DONE ONCE
                                                 EVERY SECOND*/
316
     3
                    CALL ZONE;
317
                    TAG 3 INTR3=0;
     3
318
     3
                   END;
     2
                             /*END WHILE 1 LOOP*/
319
              END;
                             /*END MODULE NASA00*/
320
             END NASA00;
                   ; PROCEDURE NASA00 (START)
                                              ; STATEMENT # 67
                    PROCEDURE TIC COUNT (START)
                                              ; STATEMENT # 68
0000
          0500
                 F
                                   TEN MSEC
                             INC
                                             ; STATEMENT # 69
0002
          D200
                             SETB
                                   TAG 0 INTR3
                                             ; STATEMENT # 70
                                   A, TEN MSEC
0004
          E500
                             MOV
0006
          B4282A
                             CJNE
                                   A, #28\overline{H}, THEN?1
                                             ; STATEMENT # 72
                                   TEN MSEC, #00H
0009
          750000 F
                             MOV
                                             ; STATEMENT # 73
                                   HUND MSEC
          0500
                 F
000C
                             INC
                                             ; STATEMENT # 74
                                   TAG 1 INTR3
000E
          D200
                 F
                             SETB
                                             ; STATEMENT # 75
0010
          E500
                             MOV
                                   A, HUND MSEC
0012
                                   A,#21H
          6421
                             XRL
                                   BOOL?59
          6005
                             JZ
0014
0016
          E500
                            MOV
                                   A, HUND MSEC
                                   A, #43H, THEN?2
0018
          B44302
                             CJNE
001B
                   BOOL?59:
                                             ; STATEMENT # 76
                             SETB
                                   TAG_2_INTR3
          D200
                  F
001B
                                             ; STATEMENT # 77
                   THEN?2:
001D
001D
          E500
                             MOV
                                   A, HUND MSEC
                                   A, #64H, THEN?3
001F
          B46411
                             CJNE
                                             ; STATEMENT # 79
                                   HUND MSEC, #00H
0022
          750000 F
                             MOV
                                             ; STATEMENT # 80
```

0025	0500	F	INC	SEC			
				;	STATEMENT	#	81
0027	D200	F	SETB	TAG_3_INTR3	STATEMENT	#	0 2
0029	B200	F	CPL	BLINK	SIMIEMENI	#	02
002B	E500	F	MOV7		STATEMENT	#	83
002B 002D	E500 B40A03	Г	MOV CJNE	A,SEC A,#OAH,THEN	?4		
			001.2		STATEMENT	#	84
0030	750000	F	MOV	SEC,#00H	C m a m n a r a m	ш	0.5
0033		THEN?4:		7	STATEMENT	₩	85
				;	STATEMENT	#	86
0033		THEN?3:			CTATEMENT	щ	07
0033		THEN?1:		, ,	STATEMENT	#	0 /
0033	22		RET				
		; PROCED	URE TI	C_COUNT (END		ш	0.0
		; PROCED	URE DA	; ; C UPDATE (ST	STATEMENT	#	88
		, INCOLD	OND DI		STATEMENT	#	89
0034	A2B4		MOV	C,DAC COMP		"	
0036	9200	F	MOV	UP_DNNOT_FLA	AG,C		
0000	- 000	_			STATEMENT	#	90
0038	A200	F	MOV	C, UP_DNNOT_	FLAG		
003A 003B	В3 4026		CPL	C			
0038	4026		JC	THEN?5	STATEMENT	#	9.2
003D	AE00	F	MOV	R6,DAC COUNT		#	92
003F	AF00	F	MOV	R7, DAC COUNT			
0041	900000	F	MOV	DPTR, #DAC MA			
0044	E4		CLR	Α	_		
0045	93		MOVC	A,@A+DPTR			
0046	FC		MOV	R4,A			
0047	7401		MOV	A,#01H			
0049	93		MOVC	A,@A+DPTR			
004A 004B	FD		MOV	R5,A			
004B 004C	EF C3		MOV CLR	A,R7 C			
004C	9 D		SUBB	A,R5			
004E	EE		MOV	A, R6			
004F	9C		SUBB	A,R4			
0050	400A		JC	THEN?6			
					STATEMENT	#	93
0052		F -	MOV	DPTR, #DAC_MA	_		
0055	7800	F	MOV	_	NTER		
0057	120000	r	LCALL		STATEMENT	#	0.4
005A	8005		SJMP	ELSE?7) TUTENT	Ħ	J 4
005C		THEN?6:					
005C	7800	F	MOV		NTER		
005E	120000	F	LCALL	?P0024			0.5
0061		ELSE?7:		; 9	STATEMENT	#	95
0001		:/:dcu:/:					

```
; STATEMENT # 96
0061
          8013
                              SJMP
                                    ELSE?8
0063
                   THEN?5:
                                               ; STATEMENT # 97
0063
          E500
                  F
                             MOV
                                    A, DAC COUNTER+0001H
0065
          4500
                  F
                             ORL
                                    A, DAC COUNTER
0067
          7008
                                    THEN? 9
                             JNZ
                                               ; STATEMENT # 98
0069
          750000 F
                             MOV
                                    DAC COUNTER+0001H, #00H
006C
          750000 F
                             MOV
                                    DAC COUNTER, #00H
                                              ; STATEMENT # 99
006F
          8005
                             SJMP
                                    ELSE?10
0071
                   THEN?9:
0071
          7800
                  F
                                    RO, #DAC COUNTER
                             MOV
0073
          120000 F
                             LCALL ?P0026
                                              ; STATEMENT # 100
0076
                  ELSE?10:
                                              ; STATEMENT # 101
0076
                  ELSE?8:
                                              ; STATEMENT # 102
0076
                                    R6, DAC COUNTER
          AE 00
                  F
                             MOV
0078
                  F
          AF00
                             VOM
                                    R7, DAC COUNTER+0001H
007A
          7404
                             VOM
                                    A,#04H
007C
          120000 F
                             LCALL ?P0032
007F
                  F
          8E00
                             MOV
                                    TEMPOR WORD, R6
0081
          8F00
                  F
                             MOV
                                    TEMPOR WORD+0001H, R7
                                              ; STATEMENT # 103
0083
          E500
                  F
                             MOV
                                    A, TEMPOR WORD
0085
          F580
                             VOM
                                    PORT 0,A
                                              ; STATEMENT # 104
0087
          E500
                  F
                             MOV
                                    A, TEMPOR WORD+0001H
0089
          F500
                  F
                             MOV
                                    TEMPOR BIT OVR, A
                                              ; STATEMENT #
008B
          A200
                  F
                             MOV
                                    C.TEMPOR BIT.B7
008D
          9293
                             MOV
                                    PORT 1 BIT 3,C
                                              ; STATEMENT # 106
008F
          A200
                  F
                             MOV
                                    C, TEMPOR BIT. B6
0091
          9292
                             MOV
                                    PORT 1 BIT 2,C
                                              ; STATEMENT # 107
0093
          A200
                  F
                                    C, TEMPOR BIT. B5
                             MOV
0095
          9291
                                    PORT 1 BIT 1,C
                             MOV
                                              ; STATEMENT # 108
0097
          A200
                  F
                             MOV
                                    C, TEMPOR BIT. B4
0099
          9290
                             VOM
                                    PORT 1 BIT 0,C
                                              ; STATEMENT # 110
009B
          22
                             RET
                     PROCEDURE DAC UPDATE (END)
                                              ; STATEMENT #
                                                             111
                    PROCEDURE ANALYSIS (START)
                                              ; STATEMENT #
                                                             112
009C
          E500
                                    A, ZONE I
                  F
                             MOV
009E
          900000 F
                                    DPTR, #CASE?JMPTBL?03BE
                             MOV
          25E0
00A1
                             ADD
                                    A,ACC
00A3
          73
                                    @A+DPTR
                             JMP
```

```
00A4
                    CASE?98:
                                                ; STATEMENT # 113
00A4
          0100
                  F
                              AJMP
                                     CASEND?11
00A6
                    CASE?99:
                                                ; STATEMENT # 115
00A6
          A200
                                     C, ZONE 1
                              VOM
8A00
          4002
                              JC
                                     THEN?12
                                                ; STATEMENT # 117
00AA
          D200
                  F
                              SETB
                                     ZONE 1
                                                ; STATEMENT # 119
00AC
                    THEN?12:
                                     R6,DAC_COUNTER
R7,DAC_COUNTER+0001H
00AC
          AE00
                  F
                              MOV
00AE
          AF00
                  F
                              MOV
00B0
          900000 F
                                     DPTR, # PEAK_1
                              MOV
00B3
          E 4
                              CLR
          93
00B4
                              MOVC
                                     A,@A+DPTR
00B5
          FC
                              MOV
                                     R4,A
00B6
          7401
                              MOV
                                     A,#01H
          93
00B8
                              MOVC
                                     A,@A+DPTR
00B9
          FD
                              MOV
                                     R5,A
00BA
          ΕF
                              MOV
                                     A,R7
00BB
          D3
                              SETB
                                     С
00BC
          9D
                              SUBB
                                     A,R5
00BD
          EΕ
                                     A,R6
                              MOV
00BE
          9C
                              SUBB
                                     A,R4
                                     THEN?13
00BF
          4002
                              JC
                                                ; STATEMENT # 120
                                     FAIL ZONE 1
00C1
          D200
                  F
                              SETB
                                               ; STATEMENT # 121
00C3
                   THEN?13:
00C3
          8074
                              SJMP
                                     CASEND?11
00C5
                   CASE?100:
                                                ; STATEMENT # 123
                                     C, ZONE 2
00C5
          A200
                              MOV
00C7
          4004
                              JC
                                     THEN? 1\overline{4}
                                                ; STATEMENT # 125
00C9
          C200
                              CLR
                  F
                                     ZONE 1
                                                ; STATEMENT # 126
00CB
          D200
                  F
                              SETB
                                     ZONE 2
                                                ; STATEMENT # 128
00CD
                   THEN?14:
00CD
          AE00
                  F
                              MOV
                                     R6, DAC COUNTER
                                     R7, DAC COUNTER+0001H
00CF
          AF00
                  F
                              MOV
00D1
          900000 F
                              VOM
                                     DPTR, #PEAK 2
00D4
          E4
                              CLR
          93
                              MOVC
                                     A, @A+DPTR
00D5
00D6
          FC
                              VOM
                                     R4,A
00D7
          7401
                                     A,#01H
                              VOM
          93
                              MOVC
                                     A,@A+DPTR
00D9
                              VOM
                                     R5,A
          FD
00DA
                                     A,R7
                              VOM
00DB
          EF
00DC
          D3
                              SETB
                                     C
          9D
                              SUBB
                                     A,R5
00 DD
00DE
          EE
                              VOM
                                     A,R6
```

00DF 00E0	9C 4002		SUBB JC	A,R4 THEN?15
00E2	D200	F	SETB	; STATEMENT # 129 PASS_ZONE_2
00E4 00E4 00E6	8053	THEN?15: CASE?101	SJMP	; STATEMENT # 130 CASEND?11
00E6 00EB	A200 400A	F	MOV JC	; STATEMENT # 132 C,ZONE 3 THEN?16
00EA	C200	F	CLR	; STATEMENT # 134 ZONE_2 ; STATEMENT # 135
00EC	D200	F	SETB	ZONE_3 ; STATEMENT # 136
00EE 00F1	750000 750000	F F	MOV MOV	PEAK_COUNTER+0001H,#00H PEAK_COUNTER,#00H ; STATEMENT # 138
00F4 00F4 00F6 00F7	A200 B3 4014	THEN?16: F	MOV CPL JC	C,UP_DNNOT_FLAG C THEN?17
00F9 00FB 00FD 00FF 0100 0101 0103 0104	AE00 AF00 74FF D3 9F 74FF 9E 4005	F	MOV MOV SETB SUBB MOV SUBB JC	; STATEMENT # 140 R6,PEAK_COUNTER R7,PEAK_COUNTER+0001H A,#0FFH C A,R7 A,#0FFH A,R6 THEN?18
0106 0108	7800 120000	F F	MOV LCALL	; STATEMENT # 141 R0#PEAK_COUNTER ?P0024
010B		THEN?18:		; STATEMENT # 142
010B 010D	800B	THEN?17:	SJMP	; STATEMENT # 143 ELSE?19
010D 010F 0111	E500 4500 6005	F F	MOV ORL JZ	; STATEMENT # 144 A,PEAK_COUNTER+0001H A,PEAK_COUNTER THEN?20
0113 0115	7800 120000	F F	MOV LCALL	; STATEMENT # 145 R0, #PEAK_COUNTER ?P0026
0118		THEN?20:		; STATEMENT # 146
0118 0118 011A 011C	AE00 AF00 900000	ELSE?19: F F F	MOV MOV MOV	; STATEMENT # 147 R6,PEAK_COUNTER R7,PEAK_COUNTER+0001H DPTR,#PEAK_3

```
011F
          E4
                              CLR
0120
          93
                              MOVC
                                     A,@A+DPTR
0121
          FC
                              MOV
                                     R4,A
                              MOV
0122
           7401
                                     A,#01H
0124
          93
                                     A, @A+DPTR
                              MOVC
0125
          FD
                              MOV
                                     R5,A
0126
                              MOV
                                     A,R7
0127
          D3
                              SETB
0128
          9D
                              SUBB
                                     A,R5
0129
          EΕ
                              VOM
                                     A,R6
012A
          9C
                              SUBB
                                     A,R4
012B
          4002
                              JC
                                     THEN?21
                                               ; STATEMENT # 148
012D
          D200
                                     FAIL ZONE 3
                              SETB
                                               ; STATEMENT # 149
012F
                    THEN?21:
012F
          8008
                              SJMP
                                     CASEND?11
0131
                    CASE?102:
                                                ; STATEMENT # 151
0131
          A200
                              MOV
                                     C, ZONE 4
0133
          4004
                              JC
                                     THEN?22
                                               ; STATEMENT # 153
0135
          C200
                  F
                              CLR
                                     ZONE 3
                                                ; STATEMENT # 154
0137
          D200
                              SETB
                                     ZONE 4
                                               ; STATEMENT # 156
0139
                   THEN?22:
                                               ; STATEMENT # 157
0139
                   CASEND?11:
                                                 STATEMENT # 158
0139
          22
                              RET
                    ; PROCEDURE ANALYSIS (END)
                                               ; STATEMENT # 159
                    ; PROCEDURE SWITCH (START)
                                               ; STATEMENT # 160
013A
          A<sub>2</sub>B<sub>3</sub>
                                     C, START STOP SW
                              MOV
013C
          9200
                              MOV
                                     START N,C
                                               ; STATEMENT # 161
                                     C, START N
013E
          A200
                              MOV
0140
          В3
                              CPL
                                     C
0141
          B3
                                     C
                              CPL
0142
          5005
                                     BOOL?61
                              JNC
0144
          A200
                              VOM
                                     C,START P
0146
          В3
                              CPL
0147
          4002
                              JC
                                     BOOL?63
0149
                   BOOL?61:
          8002
                              SJMP
0149
                                     THEN?23
014B
                   BOOL?63:
                                               ; STATEMENT # 162
014B
          B200
                  F
                              CPL
                                     START
                                               ; STATEMENT # 163
014D
                   THEN? 23:
014D
          A200
                  F
                              MOV
                                     C,START N
          9200
                                     START P,C
014F
                  F
                              MOV
```

0151	22		RET		; STATEMENT # 164
V = V =		·	URE SW	VITCH (END	; STATEMENT # 165
0152	A200	; PROCED	URE TI MOV	ME (START C,START	; STATEMENT # 166
0154	400F	-	JC	THEN?24	; STATEMENT # 168
0156	C200	F	CLR	RUN	; STATEMENT # 169
0158	C 20 0	F	CLR	FINISH	; STATEMENT # 170
015A	C200	F	CLR	ZONE_1	; STATEMENT # 171
015C	C200	F	CLR	ZONE_2	
015E	C200	F	CLR	ZONE_3	•
0160	C200	F	CLR	ZONE_4	; STATEMENT # 173
0162	750000	F	MOV	ZONE_I,#	
0165		THEN?24:			; STATEMENT # 176
0165 0167	A200 B3	F	MOV CPL	C,START C	
0168	B3		CPL	C	
0169	500A		JNC	BOOL?65	
016B	A200	F	MOV	C, RUN	
016D	в3		CPL	С	
016E	5005		JNC	BOOL?67	
0170	A200	F	MOV	C,FINISH	
0172	В3		CPL	С	
0173	4002		JC	BOOL?69	
0175 0175		BOOL?67: BOOL?65:			
0175 0177	800E	BOOL?69:	SJMP	THEN?25	
0177	C200	F	CLR	FAIL ZONE	; STATEMENT # 178
0117	0200	•	CLIC	11111_20111	; STATEMENT # 179
0179	C200	F	CLR	PASS_ZONE	E_2; STATEMENT # 180
017B	C200	F	CLR	FAIL_ZONE	•
017D	750000		MOV		rer+0001H,#00H
0180	750000	F.	MOV	RUN_COUNT	FER,#UUH ; STATEMENT # 182
0183	D200	F	SETB	RUN	; STATEMENT # 184
0185		THEN?25:			
0185	A200	F	MOV	C,START	
0187	В3		CPL	C	
0188	В3		CPL	C	

```
BOOL?71
0189
          500C
                              JNC
018B
          A200
                  F
                              MOV
                                     C, RUN
                                     C
                              CPL
018D
          В3
                                     C
                              CPL
018E
          B3
                                     BOOL?73
018F
          5006
                              JNC
          A200
                  F
                              MOV
                                     C, ZONE 4
0191
0193
          В3
                              CPL
                                     C
                              CPL
          ВЗ
0194
                                     BOOL?75
          4002
                              JC
0195
                   BOOL?73:
0197
0197
                   BOOL?71:
                              SJMP THEN?26
          8004
0197
                   BOOL?75:
0199
                                                ; STATEMENT # 186
0199
          D200
                  F
                              SETB
                                     FINISH
                                                  STATEMENT # 187
                  F
                              CLR
                                     RUN
          C200
019B
                                                 STATEMENT # 189
                   THEN?26:
019D
          22
019D
                              RET
                      PROCEDURE TIME (END)
                                                ; STATEMENT # 190
                     PROCEDURE LITE
                                       (START)
                                                ; STATEMENT # 191
          750006 F
                              MOV
                                     WINDOW, #06H
019E
                                                ; STATEMENT # 192
          E500
                  F
                              MOV
                                     A, DAC COUNTER+0001H
01A1
                                     A, DAC COUNTER
01A3
          4500
                  F
                              ORL
                                     THEN?\overline{2}7
          7002
                              JNZ
01A5
                                                ; STATEMENT # 193
01A7
          1500
                  F
                              DEC
                                     WINDOW
                                                ; STATEMENT # 194
                   THEN?27:
01A9
                              MOV
                                     R6, DAC COUNTER
01A9
          AE00
                  F
                                     R7, DAC COUNTER+0001H
                              MOV
01AB
          AF00
                  F
01AD
          900000 F
                              MOV
                                     DPTR, #WINDOW 1
                              CLR
01B0
          E4
                                     A,@A+DPTR
                              MOVC
01B1
          93
                              MOV
                                     R4,A
          FC
01B2
                                     A, #01H
01B3
          7401
                              MOV
          93
                              MOVC
                                     A,@A+DPTR
01B5
                              MOV
                                     R5,A
          FD
01B6
                              VOM
                                     A,R5
01B7
          ED
                              SETB
                                     C
01B8
          D3
01B9
          9F
                              SUBB
                                     A,R7
          EC
                              MOV
                                     A,R4
01BA
          9E
                              SUBB
                                     A,R6
01BB
                                     THEN?28
                              JC
01BC
          4002
                                                : STATEMENT # 195
                              DEC
                                     WINDOW
01BE
          1500
                  F
                                                ; STATEMENT # 196
                    THEN?28:
01C0
                              MOV
                                     R6, DAC COUNTER
                  F
01C0
          AE00
                                     R7, DAC COUNTER+0001H
01C2
          AF00
                   F
                              MOV
```

```
01C4
          900000 F
                              VOM
                                     DPTR, #WINDOW 2
01C7
                              CLR
          E4
01C8
          93
                              MOVC
                                     A, @A+DPTR
01C9
          FC
                              VOM
                                     R4,A
01CA
          7401
                              VOM
                                     A,#01H
          93
                              MOVC
                                     A, @A+DPTR
01CC
01CD
          FD
                              MOV
                                     R5,A
                              MOV
                                     A,R5
01CE
          ED
                              SETB
                                     C
01CF
          D3
01D0
          9F
                              SUBB
                                     A, R7
01D1
          EC
                              VOM
                                     A,R4
                              SUBB
                                     A,R6
01D2
          9E
01D3
          4002
                              JC
                                     THEN?29
                                               : STATEMENT # 197
          1500
                  F
                              DEC
                                     WINDOW
01D5
                                               : STATEMENT # 198
01D7
                   THEN?29:
01D7
          AE00
                              MOV
                                     R6, DAC COUNTER
                                     R7, DAC COUNTER+0001H
                              MOV
01D9
          AF00
          900000 F
                                     DPTR, #WINDOW 3
01DB
                              MOV
01DE
          E4
                              CLR
01DF
          93
                              MOVC
                                     A,@A+DPTR
01E0
          FC
                              MOV
                                     R4,A
          7401
                                     A,#01H
                              MOV
01E1
          93
                              MOVC
                                     A,@A+DPTR
01E3
                              VOM
                                     R5,A
01E4
          FD
01E5
          ED
                              VOM
                                     A,R5
                                     C
01E6
          D3
                              SETB
          9F
                              SUBB
                                     A,R7
01E7
01E8
          EC
                              MOV
                                     A,R4
                              SUBB
                                     A,R6
01E9
          9E
01EA
          4002
                              JC
                                     THEN?30
                                               ; STATEMENT # 199
                              DEC
                                     WINDOW
01EC
          1500
                  F
                                               ; STATEMENT # 200
01EE
                   THEN?30:
                                     R6, DAC COUNTER
01EE
                  F
                              MOV
          AE00
                                     R7, DAC COUNTER+0001H
01F0
          AF00
                              MOV
                  F
          900000 F
                                     DPTR, #WINDOW 4
                              MOV
01F2
01F5
          E4
                              CLR
          93
                              MOVC
                                     A,@A+DPTR
01F6
          FC
                              MOV
                                     R4,A
01F7
01F8
          7401
                              VOM
                                     A,#01H
                                     A, @A+DPTR
01FA
          93
                              MOVC
                                     R5,A
                              MOV
01FB
          FD
01FC
          ED
                              MOV
                                     A,R5
                              SETB
                                     C
01FD
          D3
01FE
          9F
                              SUBB
                                     A, R7
                                     A,R4
01FF
          EC
                              MOV
0200
                              SUBB
                                     A,R6
          9E
          4002
                              JC
                                     THEN?31
0201
                                               ; STATEMENT # 201
0203
          1500
                  F
                              DEC
                                     WINDOW
                                               ; STATEMENT # 202
```

```
0205
                   THEN?31:
0205
                                    R6, DAC_COUNTER
                  F
          AE00
                             MOV
0207
          AF00
                  F
                                    R7, DAC COUNTER+0001H
                             MOV
0209
          900000 F
                                    DPTR, #WINDOW_5
                             MOV
020C
          E4
                             CLR
020D
          93
                             MOVC
                                    A,@A+DPTR
          FC
020E
                             MOV
                                    R4,A
020F
          7401
                             VOM
                                    A,#01H
0211
          93
                             MOVC
                                    A,@A+DPTR
                             MOV
0212
          FD
                                    R5,A
0213
          ED
                             MOV
                                    A,R5
          DЗ
0214
                             SETB
                                    C
0215
          9F
                             SUBB
                                    A, R7
                                    A,R4
0216
          EC
                             MOV
0217
                             SUBB
          9E
                                    A,R6
0218
          4002
                             JC
                                    THEN?32
                                              ; STATEMENT # 203
021A
          1500
                  F
                             DEC
                                    WINDOW
                                              ; STATEMENT # 204
021C
                   THEN?32:
          AE00
021C
                  F
                             MOV
                                    R6, DAC COUNTER
021E
          AF00
                             MOV
                                    R7, DAC COUNTER+0001H
0220
                             MOV
                                    A,R7
          EF
                                    A,#OFFH,THEN?33
0221
          B4FF07
                             CJNE
                             VOM
                                    A,R6
0224
          EE
          B40F03
                                    A, #0FH, THEN?33
0225
                             CJNE
                                              ; STATEMENT # 205
0228
          850000 F
                             MOV
                                    WINDOW, WINDOW
                                              ; STATEMENT # 206
022B
                   THEN?33:
022B
          E500
                             VOM
                                    A, WINDOW
                                    DPTR, #CASE?JMPTBL?03BE+000AH
022D
          900000 F
                             MOV
          25E0
                             ADD
                                    A, ACC
0230
0232
          73
                             JMP
                                    @A+DPTR
                   CASE?103:
0233
                                              ; STATEMENT # 208
0233
          A200
                  F
                             MOV
                                    C, BLINK
0235
          92A4
                                    LO RED_LED,C
                             MOV
                                              ; STATEMENT # 209
0237
          C2A3
                             CLR
                                    LO YEL LED
                                              ; STATEMENT # 210
0239
          C2A2
                             CLR
                                    ZERO GRN LED
                                                STATEMENT # 211
          C2A1
                             CLR
                                    HI YEL LED
023B
                                                STATEMENT # 212
023D
          C2A0
                             CLR
                                    HI RED LED
                                                STATEMENT # 213
                                    CASEND?34
          8048
                             SJMP
023F
                   CASE?104:
0241
                                                STATEMENT # 215
0241
          D2A4
                             SETB
                                    LO RED LED
                                              ; STATEMENT # 216
                                    LO YEL LED
0243
          C2A3
                             CLR
                                              ; STATEMENT # 217
```

0245	C2A2		CLR	_ _
0247	C2A1		CLR	
0249	C2A0		CLR	
	803C			; STATEMENT # 220 CASEND?34
024D		CASE?105	:	; STATEMENT # 222
024D	C2A4		CLR	LO_RED_LED ; STATEMENT # 223
024F	D2A3		SETB	LO_YEL_LED ; STATEMENT # 224
0251	C2A2		CLR	ZERO_GRN_LED
0253	C2A1		CLR	
0255	C2A0		CLR	; STATEMENT # 226 HI_RED_LED
0257	8030		SJMP	HI_RED_LED ; STATEMENT # 227 CASEND?34
0259		CASE?106	:	
0259	C2A4		CLR	; STATEMENT # 229 LO_RED_LED
025B	C2A3			; STATEMENT # 230
025D	D2A2		SETB	; STATEMENT # 231 ZERO_GRN_LED
025F	C2A1		CLR	; STATEMENT # 232 HI YEL LED
	C2A0		CLR	; STATEMENT # 233
				HI_RED_LED ; STATEMENT # 234 CASEND?34
0265	8024	CASE?107	SJMP:	CASEND?34
0265	C2A4		CLR	; STATEMENT # 236 LO_RED_LED
0267	C2A3		CLR	; STATEMENT # 237
0269	C2A2		CLR	; STATEMENT # 238 ZERO GRN LED
026B	D2A1			; STATEMENT # 239
			SETB	HI_YEL_LED ; STATEMENT # 240
026D	C2A0		CLR	HI_RED_LED ; STATEMENT # 241
026F 0271	8018	CASE?108:	SJMP	CASEND?34
				; STATEMENT # 243
0271	C2A4		CLR	LO_RED_LED ; STATEMENT # 244
0273	C2A3		CLR	LO_YEL_LED ; STATEMENT # 245
0275	C2A2		CLR	ZERO_GRN_LED
				; STATEMENT # 246

0277	C2A1		CLR	HI_YEL_LE	D			
0279	D2A0		CLR	HI RED LE	-	STATEMENT	#	247
				CASEND?34	;	STATEMENT	#	248
027B 027D	800C	CASE?109:	SJMP	CASEND:34				
027D	C2A4		CLR	LO RED LE	-	STATEMENT	#	250
					;	STATEMENT	#	251
027F	C2A3		CLR	LO_YEL_LE		STATEMENT	#	252
0281	C2A2		CLR	ZERO_GRN_	-	ED STATEMENT	#	253
0283	C2A1		CLR	HI_YEL_LE	Ď			
0285	A200	F	MOV	C,BLINK	;	STATEMENT	Ħ	254
0287	92A0		MOV	HI_RED_LE		,C STATEMENT	#	256
0289		CASEND?34	:		-			
0289	A200	F	MOV	C,START	;	STATEMENT	#	257
028B	4002		JC	THEN?35	•	STATEMENT	#	258
028D	C2A7		CLR	RUN_LED				
028F		THEN?35:			;	STATEMENT	#	259
028F	A200	F	MOV	C, RUN				
0291 0292	B3 B3		CPL CPL	C C				
0292	5006		JNC					
0295	A200	F	MOV					
0297	В3	-	CPL	C				
0298	В3		CPL	С				
0299	4002		JC	BOOL?79				
029B		BOOL?77						
029B 029D	8002	BOOL?79	SJMP	THEN?36				
0290		БООЦ. 73			:	STATEMENT	#	260
029D	D2A7		SETB	RUN LED	•	STATEMENT		261
029F		THEN?36:		_	′	O TITE DITEIT	.,	
029F	A200	F	MOV	C,FINISH				
02A1	В3		CPL	C				
02A2	в3		CPL	С				
02A3	5006		JNC	BOOL?81				
02A5	A200	F	MOV	C,START				
02A7	В3		CPL	С				
02A8	В3		CPL	С				
02A9	4002		JC	BOOL?83				
02AB		BOOL?81:						
O2AB	8004	D007 202	SJMP	THEN?37				
02AD		BOOL?83:				STATEMENT	#	262
02AD	A200	F	MOV	C,BLINK	,	OIAIDMENI	π	202

```
02AF
          92A7
                              MOV
                                     RUN LED, C
                                                ; STATEMENT # 263
02B1
                    THEN?37:
02B1
          A200
                  F
                              MOV
                                     C,START
02B3
          4002
                              JC
                                     THEN?38
                                                ; STATEMENT # 264
02B5
          C2A5
                              CLR
                                     FAIL LED
                                                ; STATEMENT # 265
02B7
                    THEN?38:
02B7
          A200
                              MOV
                                     C,START
02B9
          ВЗ
                              CPL
                                     C
02BA
          В3
                              CPL
                                     C
                                     BOOL?85
02BB
          5005
                              JNC
02BD
          A200
                              MOV
                                     C,FINISH
02BF
          В3
                              CPL
                                     C
02C0
          4002
                              JC
                                     BOOL?87
02C2
                    BOOL?85
02C2
          8006
                              SJMP
                                     THEN?39
02C4
                   BOOL?87:
                                                ; STATEMENT # 266
02C4
          A200
                  F
                              MOV
                                     C, FAIL ZONE 1
02C6
          7200
                                     C, FAIL ZONE 3
                  F
                              ORL
02C8
          92A5
                                     FAIL LED,C
                              MOV
                                               ; STATEMENT # 267
02CA
                   THEN?39:
02CA
          A200
                              MOV
                                     C,FINISH
02CC
          В3
                              CPL
                                     C
02CD
          4011
                              JC
                                     THEN?40
                                                ; STATEMENT # 268
02CF
          A200
                  F
                              MOV
                                     C, FAIL_ZONE_1
02D1
          7200
                  F
                              ORL
                                     C, FAIL ZONE 3
02D3
          4005
                              JC
                                     BOOL?89
02D5
          A200
                  F
                              MOV
                                     C, PASS ZONE 2
02D7
          B3
                              CPL
02D8
          5003
                              JNC
                                     BOOL?91
02DA
                   BOOL?89:
02DA
          D3
                                     С
                              SETB
02DB
          1008
                              SJMP
                                     BOOL?93
02DD
                   BOOL?91
02DD
          C3
                              CLR
                                     C
02DE
                   BOOL?93:
02DE
          92A5
                              MOV
                                     FAIL LED, C
                                               ; STATEMENT # 269
02E0
                   THEN?40:
02E0
          A200
                              MOV
                                     C,START
02E2
          4002
                              JC
                                     THEN?41
                                               ; STATEMENT # 270
02E4
          C2A6
                              CLR
                                     PASS LED
                                               ; STATEMENT # 271
02E6
                   THEN?41:
02E6
          A200
                  F
                              VOM
                                     C,START
02E8
          B3
                              CPL
                                     С
02E9
          B3
                              CPL
                                     C
02EA
          5005
                                     BOOL?94
                              JNC
```

```
02EC
          A200
                  F
                              MOV
                                     C, FINISH
02EE
          B3
                              CPL
                                     C
          4002
                              JC
                                     BOOL?96
02EF
02F1
                   BOOL?94:
02F1
          8004
                              SJMP
                                     THEN?42
                   BOOL?96:
02F3
                                               ; STATEMENT # 272
02F3
          A200
                              MOV
                                     C, PASS ZONE 2
02F5
          92A6
                              MOV
                                     PASS LED, C
                                               ; STATEMENT # 273
02F7
                   THEN?42:
02F7
          A200
                  F
                              VOM
                                     C,FINISH
02F9
                              CPL
                                     C
          В3
02FA
          4005
                              JC
                                     THEN?43
                                               ; STATEMENT # 274
02FC
          A2A5
                              MOV
                                     C, FAIL LED
                              CPL
02FE
          В3
                                     C
02FF
          92A6
                              VOM
                                     PASS LED, C
                                               ; STATEMENT # 275
0301
                   THEN?43:
          22
0301
                              RET
                   ; PROCEDURE LITE (END)
                                               ; STATEMENT # 276
                   : PROCEDUERE ZONE (START)
                                               ; STATEMENT # 277
0302
          A200
                              MOV
                  F
                                     C, RUN
                                     C
0304
                              CPL
          В3
                                     THEN?44
0305
          4065
                              JC
                                               ; STATEMENT # 279
                                     R6, RUN COUNTER
0307
          AE00
                  F
                              MOV
                                     R7, RUN COUNTER+0001H
0309
          AF00
                  F
                              VOM
                                     DPTR, #TIME 4
030B
          900000 F
                              MOV
030E
          E4
                              CLR
                                     Α
                                     A,@A+DPTR
030F
          93
                              MOVC
          FC
                             MOV
                                     R4,A
0310
                                     A,#01H
          7401
                              VOM
0311
          93
                             MOVC
                                     A,@A+DPTR
0313
                                     R5,A
0314
          FD
                              MOV
0315
          ED
                              MOV
                                     A,R5
                                     C
0316
          D3
                              SETB
0317
          9F
                              SUBB
                                     A,R7
0318
          EC
                              MOV
                                     A,R4
0319
                              SUBB
                                     A,R6
          9E
031A
          4003
                              JC
                                     THEN?45
                                               ; STATEMENT # 280
                                     ZONE_I, #04H
          750004 F
                              VOM
031C
                                               ; STATEMENT # 281
                   THEN?45:
031F
031F
          AE00
                  F
                              MOV
                                     R6, RUN COUNTER
                              MOV
                                     R7, RUN COUNTER+0001H
                  F
0321
          AF00
                                     DPTR, \#\overline{T}IME 3
          900000 F
                             MOV
0323
                              CLR
0326
          E 4
0327
          93
                              MOVR
                                     A,@A+DPTR
                              MOV
                                     R4,A
0328
          FC
```

```
0329
           7401
                              MOV
                                     A,#01H
           93
032B
                                     A,@A+DPTR
                              MOVC
032C
          FD
                              MOV
                                     R5,A
032D
          ED
                                     A,R5
                              MOV
032C
          D3
                              SETB
                                     C
           9F
032F
                              SUBB
                                     A,R7
0330
          EC
                              MOV
                                     A,R4
0331
          9E
                              SUBB
                                     A,R6
0332
           4003
                              JC
                                     THEN?46
                                                ; STATEMENT # 282
0334
          750003 F
                              MOV
                                     ZONE I,#03H
                                                ; STATEMENT # 283
0337
                    THEN?46:
0337
          AE00
                   F
                              MOV
                                     R6, RUN COUNTER
                                     R7, RUN COUNTER+0001H
0339
          AF00
                  F
                              MOV
033B
          900000 F
                                     DPTR, #TIME 2
                              MOV
033E
          E 4
                              CLR
033F
          93
                              MOVC
                                     A, @A DPTR
0340
          FC
                              MOV
                                     R4,A
0341
          7401
                                     A, #01H
                              VOM
0343
          93
                                     A,@A+DPTR
                              MOVC
0344
          FD
                                     R5,A
                              MOV
0345
          ED
                              MOV
                                     A,R5
0346
          D3
                              SETB
                                     C
0347
          9F
                              SUBB
                                     A,R7
0348
          EC
                              MOV
                                     A,R4
0349
          9E
                              SUBB
                                     A,R6
034A
          4003
                              JC
                                     THEN?47
                                                ; STATEMENT # 284
034C
          750002 F
                              MOV
                                     ZONE I#02H
                                                ; STATEMENT # 285
034F
                   THEN?47
034F
          AE00
                  F
                              MOV
                                     R6, RUN COUNTER
0351
          AF00
                  F
                              MOV
                                     R7, RUN COUNTER+0001H
0353
          900000 F
                              MOV
                                     DPTR, #TIME 1
0356
          E4
                              CLR
                                     Α
0357
          93
                              MOVC
                                     A,@A+DPTR
0358
          FC
                              MOV
                                     R4,A
0359
          7401
                              VOM
                                     A,#01H
035B
          93
                              MOVC
                                     A, @A+DPTR
035C
          FD
                              MOV
                                     R5,A
035D
                                     A,R5
          ED
                              MOV
035E
          D3
                                     C
                              SETB
035F
          9 F
                              SUBB
                                     A,R7
0360
          EC
                              MOV
                                     A,R4
0361
          9 E
                              SUBB
                                     A,R6
0362
          4003
                              JC
                                     THEN?48
                                               ; STATEMENT # 286
0364
          750001 F
                              MOV
                                     ZONE I,#01H
                                               ; STATEMENT # 287
0367
                   THEN?48
0367
          7800
                              MOV
                                     RO, #RUN COUNTER
0369
          120000 F
                              LCALL ?P0024
                                               ; STATEMENT # 289
```

036C		THEN?44:			
036C	22	; PROCED	RET URE ZOI	NE (END)	
036D	75816F		MOV	SP,#6FH	; STATEMENT # 290
0370	758913		MOV	TMOD,#13H	; STATEMENT # 291
0373	758840		MOV	TCON,#40H	; STATEMENT # 292
0376	759800		MOV	_	; STATEMENT # 293
					; STATEMENT # 294
0379	75B81F		MOV	IP,#1FH	; STATEMENT # 295
037C	75A808		MOV	IE,#08H	; STATEMENT # 296
037F	D2AF		SETB	EA	; STATEMENT # 297
0381	C200	F	CLR	START	; STATEMENT # 298
0383	750000	F	MOV	ZONE_I,#0	OH; STATEMENT # 299
0386 0389	750000 750000		MOV MOV	DAC_COUNT	ER+0001H,#00H
	730000				; STATEMENT # 300
038C		WHILE?49	•		; STATEMENT # 301
					, 22112-112112 11 0 0 2
038C 038C	A200	WHILE?51	MOV	C,TAG_0_I	•
	A200 B3 4008			C,TAG_0_I C WEND?52	•
038C 038E 038F	B3 4008		MOV CPL	C WEND?52	NTR3 ; STATEMENT # 302
038C 038E 038F	B3 4008 1100	F	MOV CPL JC ACALL	C WEND?52 DAC_UPDAT	NTR3 ; STATEMENT # 302
038C 038E 038F 0391	B3 4008 1100 1100	F F	MOV CPL JC ACALL	C WEND?52 DAC_UPDAT ANALYSIS	NTR3 ; STATEMENT # 302 E ; STATEMENT # 303 ; STATEMENT # 304
038C 038E 038F 0391 0393	B3 4008 1100 1100 C200	F	MOV CPL JC ACALL ACALL	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT	NTR3 ; STATEMENT # 302 E ; STATEMENT # 303 ; STATEMENT # 304
038C 038E 038F 0391	B3 4008 1100 1100	F F	MOV CPL JC ACALL	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51	TOTAL STATEMENT # 302 E ; STATEMENT # 303 ; STATEMENT # 304 R3 ; STATEMENT # 305
038C 038E 038F 0391 0393 0395 0397 0399	B3 4008 1100 1100 C200	F F F	MOV CPL JC ACALL ACALL CLR SJMP	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51	RYSTATEMENT # 302 F STATEMENT # 303 F STATEMENT # 304 RYSTATEMENT # 305 F STATEMENT # 306
038C 038E 038F 0391 0393 0395 0397 0399	B3 4008 1100 1100 C200	F F WEND?52:	MOV CPL JC ACALL ACALL CLR SJMP	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51	RYSTATEMENT # 302 F STATEMENT # 303 F STATEMENT # 304 RYSTATEMENT # 305 F STATEMENT # 306
038C 038E 038F 0391 0393 0395 0397 0399 0399	B3 4008 1100 1100 C200 80F3	F F WEND?52: WHILE?53	MOV CPL JC ACALL ACALL CLR SJMP	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51 C,TAG_1_I C WEND?54	RYSTATEMENT # 302 E ; STATEMENT # 303 ; STATEMENT # 304 R3 ; STATEMENT # 305 ; STATEMENT # 306 NTR3
038C 038E 038F 0391 0393 0395 0397 0399 0399 0399 0398	B3 4008 1100 1100 C200 80F3	F F WEND?52: WHILE?53	MOV CPL JC ACALL ACALL CLR SJMP	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51 C,TAG_1_I C WEND?54	RTR3 ; STATEMENT # 302 ; STATEMENT # 303 ; STATEMENT # 304 RS ; STATEMENT # 305 ; STATEMENT # 306 NTR3 ; STATEMENT # 307
038C 038E 038F 0391 0393 0395 0397 0399 0399 0399 0398 039C	B3 4008 1100 1100 C200 80F3 A200 B3 4008	F F WEND?52: WHILE?53	MOV CPL JC ACALL ACALL CLR SJMP	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51 C,TAG_1_I C WEND?54 SWITCH TIME	; STATEMENT # 302; STATEMENT # 303; STATEMENT # 304; STATEMENT # 305; STATEMENT # 306 NTR3 ; STATEMENT # 307; STATEMENT # 307; STATEMENT # 308
038C 038E 038F 0391 0393 0395 0397 0399 0399 0399 0398 039C	B3 4008 1100 1100 C200 80F3 A200 B3 4008 1100	F F WEND?52: WHILE?53 F	MOV CPL JC ACALL ACALL CLR SJMP MOV CPL JC ACALL	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51 C,TAG_1_I C WEND?54 SWITCH TIME	RTR3 ; STATEMENT # 302 ; STATEMENT # 303 ; STATEMENT # 304 R3 ; STATEMENT # 305 ; STATEMENT # 306 NTR3 ; STATEMENT # 307 ; STATEMENT # 308 ; STATEMENT # 308 ; STATEMENT # 309 R3
038C 038E 038F 0391 0393 0395 0397 0399 0399 0399 0398 039C 039E	B3 4008 1100 1100 C200 80F3 A200 B3 4008 1100	F F WEND?52: WHILE?53 F	MOV CPL JC ACALL ACALL CLR SJMP MOV CPL JC ACALL ACALL	C WEND?52 DAC_UPDAT ANALYSIS TAG_0_INT WHILE?51 C,TAG_1_I C WEND?54 SWITCH TIME	RTR3 ; STATEMENT # 302 ; STATEMENT # 303 ; STATEMENT # 304 R3 ; STATEMENT # 305 ; STATEMENT # 306 NTR3 ; STATEMENT # 307 ; STATEMENT # 308 ; STATEMENT # 308 ; STATEMENT # 309

```
; STATEMENT # 311
03A6
                  WHILE?55:
         A200
03A6
                            MOV
                                  C, TAG 2 INTR3
03A8
                            CPL
         B3
03A9
         4006
                            JC
                                   WEND256
                                             ; STATEMENT # 312
03AB
         1100
                 F
                            ACALL LITE
                                             ; STATEMENT # 313
                            CLR
03AD
         C200
                 F
                                   TAG 2 INTR3
                                             ; STATEMENT # 314
         80F5
                            SJMP
                                   WHILE?55
03AF
03B1
                  WEND?56:
                                             ; STATEMENT # 315
03B1
                  WHILE?57:
03B1
         A200
                            VOM
                                   C, TAG 3 INTR3
03B3
         В3
                            CPL
         4006
03B4
                            JC
                                   WEND?58
                                             ; STATEMENT # 316
03B6
         1100
                 F
                            ACALL ZONE
                                             ; STATEMENT # 317
03B8
         C200
                 F
                            CLR
                                   TAG_3_INTR3
                                             ; STATEMENT # 318
         80F5
                                   WHILE?57
03BA
                            SJMP
                  WEND?58:
03BC
                                             ; STATEMENT # 319
                                   WHILE?49
         80CE
                            SJMP
03BC
03BE
                  WEND?50:
                                             ; STATEMENT # 320
                  ; PROCEDURE NASA00 (END)
03BE
                  CASE?JMPTBL?03BE:
                                             ; JUMP TABLE FOR DO CASE
                                               LEVEL 1
         0100
                 F
                                   CASE?98
03BE
                            AJMP
         0100
                                   CASE?99
03C0
                 F
                            AJMP
         0100
                                   CASE?100
03C2
                 F
                            AJMP
         0100
                 F
                            AJMP
                                   CASE?101
03C4
                 F
                                   CASE?102
03C6
         0100
                            AJMP
03C8
         0100
                 F
                            AJMP
                                   CASE?103
                 F
                                   CASE?104
03CA
         0100
                            AJMP
         0100
                 F
                                  CASE?105
03CC
                            AJMP
                 F
03CE
         0100
                            AJMP
                                   CASE?106
         0100
                F
                                   CASE?107
03D0
                            AJMP
                F
03D2
         0100
                            AJMP
                                   CASE?108
03D4
         0100
                F
                                   CASE?109
                            AJMP
```

CROSS-REFERENCE LISTING

DEFN	SPACE	SIZE	NAME ATTRIBUTES AND REFERENCES	
111	CODE	158	ANALYSIS PROCEDURE USING(0) STACK=02H	
65	BIT	1	303 B0BIT MEMBER OF TEMPOR_BIT; OFFSET=0	
65	BIT	1	Bl BIT MEMBER OF TEMPOR_BIT; OFFSET=1	
65	BIT	1	B2 BIT MEMBER OF TEMPOR_BIT; OFFSET=2	
65	BIT	1	B3 BIT MEMBER OF TEMPOR_BIT; OFFSET=3	
65	BIT	1	B4 BIT MEMBER OF TEMPOR_BIT; OFFSET=4 108	
65	BIT	1	B5 BIT MEMBER OF TEMPOR_BIT; OFFSET=5 107	
65	BIT	1	B6 BIT MEMBER OF TEMPOR BIT; OFFSET=6 106	
65	BIT	1	B7 BIT MEMBER OF TEMPOR_BIT; OFFSET=7 105	
52	BIT	1	BLINK BIT 82 208 254 262	
24			DAC_COMP BIT REGISTER AT(B4H) 89	
25	DATA	A 2	DAC_COUNTER WORD 92 93 94 97 98 99 102	
			119 128 192 194 196 198 200 202 204 299	
29	CODE		DAC_MAX_COUNT . WORD 92 93	
88	CODE	E 104	302	
2			DCL LITERALLY	
			2 3 4 5 6 7 8 9 10 11 12 13 14 15	
			16 17 18 19 20 21 22	
			23 24 25 26 27 28 29	
			30 31 32 33 34 35 36	
			37 38 39 40 41 42 43 44 45 46 47 48 49 50	
			44 45 46 47 48 49 50 51 52 53 54 55 56 57	
			58 59 60 61 62 63 64 65	
22			EA BIT REGISTER AT(AFH) 296	
19			FAIL_LED BIT REGISTER AT(A5H) 264 266 268 274	
62	BIT	1	FAIL_ZONE_1 BIT 120 178 266 268	
64	BIT	1	FAIL_ZONE_3 BIT	
			D=38	

5 /	BIT	1	169 176 186 261 265 267 271
			273 HIGH BUILTIN
14			103 HI_RED_LED BIT REGISTER AT(A0H)
15			212 219 226 233 240 247 254 HI_YEL_LED BIT REGISTER AT(AlH)
43	DATA	1	211 218 225 232 239 246 253 HUND MSEC BYTE
8			
			295
9			IP BYTE REGISTER AT(B8H) 294
190	CODE	356	LITE PROCEDURE USING(0) STACK=02H
			LOW BUILTIN 104
18			LO_RED_LED BIT REGISTER AT(A4H)
17			208 215 222 229 236 243 250 LO_YEL_LED BIT REGISTER AT(A3H)
1	CODE	81	209 216 223 230 237 244 251 NASA00 MODULE
20			PASS_LED BIT REGISTER AT(A6H)
63	BIT	1	270 272 274 PASS_ZONE_2 BIT
30	CODE	2	129 179 268 272 PEAK_1 WORD
31	CODE	2	119 PEAK_2 WORD
32	CODE	2	128 PEAK_3 WORD
26	DATA	2	147 PEAK COUNTER WORD
3			136 140 141 144 145 147
			PORT_0BYTE REGISTER AT(80H) 103
10			PORT_1_BIT_0 BIT REGISTER AT(90H) 108
11			PORT_1_BIT_1 BIT REGISTER AT(91H) 107
12			PORT_1_BIT_2 BIT REGISTER AT(92H)
13			106 PORT_1_BIT_3 BIT_REGISTER AT(93H)
56	BIT	1	105 RUN BIT
27	DATA	2	168 176 182 184 187 259 277 RUN_COUNTER WORD
21			181 279 281 283 285 287 RUN_LED BIT REGISTER AT(A7H)
7			258 260 262 SCONBYTE REGISTER AT(98H)

			20.2
ΛΛ	מדגת	1	293 SEC BYTE
77	DAIA	1	80 83 84
			SHL BUILTIN
4			102 SP BYTE REGISTER AT(81H) 290
53	BIT	1	START BIT
			162 166 176 184 257 259 261 263 265 269 271 297
5 4	BIT	1	START_N BIT
			160 161 163
55	BIT	1	START_P BIT 161 163
23			START_STOP_SW . BIT REGISTER AT(B3H)
			160
159	CODE	24	SWITCH PROCEDURE USING(0) STACK=02H 307
48	BIT	1	TAG 0 INTR3 BIT
4.0	D.T.M.	1	69 301 304
49	BIT	1	TAG-1-INTR3 BIT 74 306 309
50	BIT	1	TAG 2 INTR3 BIT
51	BIT	1	76 311 313 TAG_3_INTR3 BIT
31	DII	•	81 315 317
5			TCON BYTE REGISTER AT(88H) 292
65	BITAD	1	TEMPOR BIT STRUCTURE
66	DATA	1	66 105 106 107 108 TEMPOR_BIT_OVR. BYTE AT(.TEMPOR_BIT)
00	DATA		104
28	DATA	2	TEMPOR_WORD WORD
42	DATA	1	102 103 104 TEN_MSEC BYTE
			68 70 72
67	CODE	52	TIC_COUNT PROCEDURE USING(0) STACK=09H INTERRUPT(3)
165	CODE	76	TIME PROCEDURE USING(0) STACK=02H 308
38	CODE	2	TIME_1 WORD 285
39	CODE	2	TIME_2 WORD 283
40	CODE	2	TIME_3 WORD
41	CODE	2	
6			TMOD BYTE REGISTER AT(89H)
. 7	D.T.M	1	291
47	BIT	1	UP_DNNOT_FLAG . BIT 89 90 138
45	DATA	1	WINDOW BYTE 191 193 195 197 199 201 203

			205 206
33	CODE	2	WINDOW_1 WORD 194
34	CODE	2	WINDOW_2 WORD 196
35	CODE	2	WINDOW_3 WORD 198
36	CODE	2	WINDOW_4 WORD 200
37	CODE	2	WINDOW_5 WORD 202
16			ZERO_GRN_LED BIT REGISTER AT(A2H) 210 217 224 231 238 245 252
276	CODE	107	ZONE PROCEDURE USING(0) STACK=02H 316
58	BIT	1	ZONE_1 BIT
59	BIT	1	115 117 125 170 ZONE_2 BIT
60	BIT	1	123 126 134 171 ZONE_3 BIT
61	BIT	1	132 135 153 172 ZONE 4 BIT
46	DATA	1	151 154 173 184 ZONE I BYTE
		_	112 174 280 282 284 286 298

WARNINGS:

3 IS HIGHEST USED INTERRUPT

MODULE INFORMATION:	(STATIC+OVERL	AYABLE)
CODE SIZE	= 03D6H	982D
CONSTANT SIZE	= 001AH	26D
DIRECT VARIABLE SIZE	= 0DH+00H	13D+ 0D
INDIRECT VARIABLE SIZE	= 00H+00H	0D+ 0D
BIT SIZE	= 12H+00H	18D+ OD
BIT-ADDRESSABLE SIZE	= 01H+00H	1D+ 0D
AUXILIARY VARIABLE SIZE	= 0000H	0 D
MAXIMUM STACK SIZE	= 0011H	17D
REGISTER-BANK(S) USED:	=0	
409 LINES READ		
0 PROGRAM ERROR(S)		
END OF PL/M-51 COMPLIATION		

ISIS-II MCS-51 RELOCATOR AND LINKER, V3.0, INVOKED BY: RL51: F0: NASA00.OBJ,: F0: PLM51.LIB TO NASA00.ABS PRINT(:LP:)

INPUT MODULES INCLUDED

:F0:NASA00.OBJ(NASA00)

:F0:PLM51.LIB(?P0008)

:F0:PLM51.LIB(?P0024)

:F0:PLM51.LIB(?P0026)

:F0:PLM51.LIB(?P0032)

:F0:PLM51.LIB(?PIV03)

:F0:PLM51.LIB(?PIVOR)

:F0:PLM51.LIB(?PIP03)

LINK MAP FOR :F0:NASA00.ABS(NASA00)

TYPE	BASE	LENGTH	RELOCATION	SEGMENT NAME
				
REG	0000н	0008н		"REG BANK 0"
DATA	18000	000DH	UNIT	?NASA00?DT
	0015Н	000BH		*** GAP ***
DATA	0020H	0001H	BIT ADDR	?NASA00?BA
BIT	0021H	0002H.2	$\mathtt{UNI}\overline{\mathtt{T}}$?NASA00?BI
	0023H.2	0000н.6		*** GAP ***
IDATA	0024H	0001H	UNIT	?STACK
CODE	0000н	0003н	ABSOLUTE	
CODE	0003Н	000EH	UNIT	?P0032S
CODE	0011н	0009Н	UNIT	?P0008S
0032	001AH	0001Н		*** GAP ***
CODE	001BH	0003Н	ABSOLUTE	
CODE	001EH	03D6H	INBLOCK	?NASA00?PR
CODE	03F4H	001BH	UNIT	?PIP03S
CODE	040FH	001AH	UNIT	?NASA00?CO
CODE	0429H	0009н	UNIT	?PIVORS
CODE	0432H	0008Н	UNIT	?P0024S
CODE	043AH	0008Н	UNIT	?P0026S

SYMBOL TABLE FOR :F0:NASA00.ABS(NASA00)

TYPE	NAME	
MODULE	NASA00	
SYMBOL	NASA00	
SYMBOL	PORT 0	
SYMBOL	SP -	
SYMBOL	TCON	
SYMBOL	TMOD	
SYMBOL	SCON	
	MODULE SYMBOL SYMBOL SYMBOL SYMBOL SYMBOL	

```
D:00A8H
           SYMBOL
                      ΙE
D:00B8H
           SYMBOL
                      ΤP
B:0090H
           SYMBOL
                     PORT 1 BIT 0
B:0090H.1 SYMBOL
                     PORT 1 BIT 1
B:0090H.2 SYMBOL
                     PORT 1 BIT 2
B:0090H.3 SYMBOL
                     PORT 1 BIT 3
                     HI RED LED
B:00A0H
           SYMBOL
B:00A0H.1 SYMBOL
                     HI YEL LED
B:00A0H.2 SYMBOL
                     ZERO GRN LED
                     LO YEL LED
B:00A0H.3 SYMBOL
B:00A0H.4 SYMBOL
                     LO RED LED
B:00A0H.5 SYMBOL
                     FAIL LED
B:00A0H.6 SYMBOL
                     PASS LED
B:00A0H.7 SYMBOL
                     RUN LED
B:00A8H.7 SYMBOL
                     ΕA
B:00B0H.3 SYMBOL
                     START STOP SW
B:00BOH.4 SYMBOL
                     DAC COMP
                     DAC COUNTER
D:0008H
           SYMBOL
D:000AH
                     PEAK COUNTER
           SYMBOL
D:000CH
           SYMBOL
                     RUN COUNTER
D:000EH
           SYMBOL
                     TEMPOR WORD
C:040FH
           SYMBOL
                     DAC MAX COUNT
C:0411H
                     PEAK 1
           SYMBOL
C:0413H
                     PEAK 2
           SYMBOL
                     PEAK^{-3}
C:0415H
           SYMBOL
C:0417H
           SYMBOL
                     WINDOW 1
C:0419H
           SYMBOL
                     WINDOW 2
C:041BH
                     WINDOW 3
           SYMBOL
C:041DH
           SYMBOL
                     WINDOW 4
C:041FH
           SYMBOL
                     WINDOW 5
C:0421H
           SYMBOL
                     TIME 1
C:0423H
                     TIME 2
           SYMBOL
C:0425H
           SYMBOL
                     TIME 3
C:0427H
                     TIME 4
           SYMBOL
D:0010H
           SYMBOL
                     TEN MSEC
D:0011H
                     HUND MSEC
           SYMBOL
D:0012H
           SYMBOL
                     SEC
D:0013H
           SYMBOL
                     WINDOW
D:0014H
           SYMBOL
                     ZONE I
B:0021H
                     UP DNNOT FLAG
           SYMBOL
B:0021H.1 SYMBOL
                     TAG 0 INTR3
                     TAG<sup>1</sup>INTR3
B:0021H.2 SYMBOL
                     TAG<sup>2</sup>INTR3
B:0021H.3 SYMBOL
                     TAG<sup>3</sup>INTR3
B:0021H.4 SYMBOL
B:0021H.5 SYMBOL
                     BLINK
B:0021H.6 SYMBOL
                     START
B:0021H.7 SYMBOL
                     START N
B:0022H
           SYMBOL
                     START P
B:0022H.1 SYMBOL
                     RUN
B:0022H.2 SYMBOL
                     FINISH
B:0022H.3 SYMBOL
                     ZONE 1
B:0022H.4 SYMBOL
                     ZONE 2
B:0022H.5 SYMBOL
                     ZONE 3
B:0022H.6 SYMBOL
                     ZONE 4
```

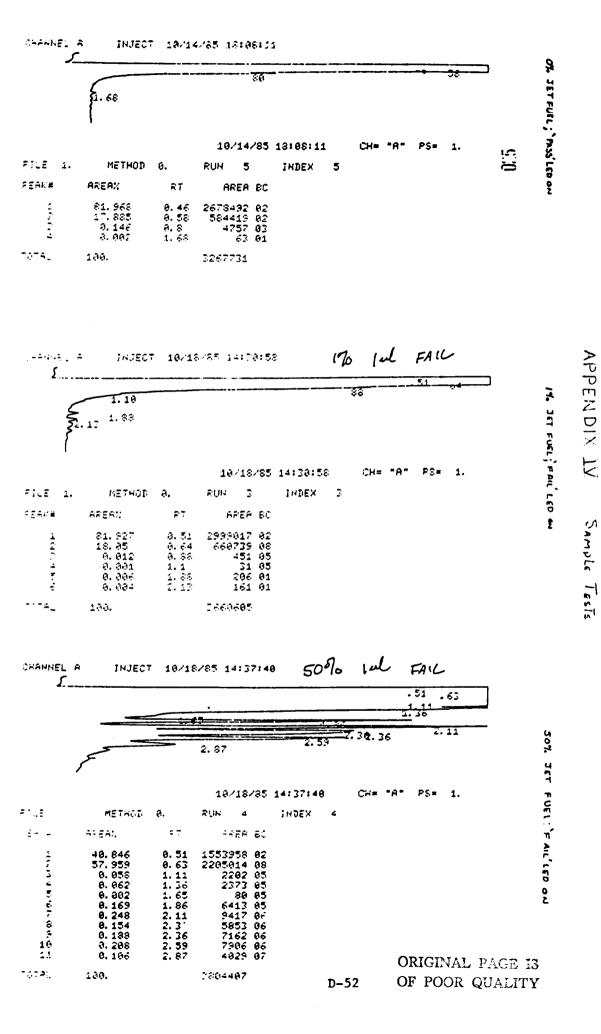
```
B:0022H.7 SYMBOL
                      FAIL ZONE 1
                      PASS ZONE 2
B:0023H
           SYMBOL
                      FAIL ZONE
B:0023H.1
           SYMBOL
                      TEMPOR BIT
D:0020H
           SYMBOL
D:0020H
                     TEMPOR BIT OVR
           SYMBOL
                      TIC_COUNT
C:001EH
           SYMBOL
           PROC
                     TIC COUNT
_____
           ENDPROC
                     TIC COUNT
                     DAC UPDATE
C:0052H
           SYMBOL
                      DAC UPDATE
           PROC
-----
                     DAC UPDATE
           ENDPROC
C:00BAH
                     ANALYSIS
           SYMBOL
           PROC
                     ANALYSIS
           ENDPROC
                     ANALYSIS
C:0158H
           SYMBOL
                     SWITCH
           PROC
                     SWITCH
           ENDPROC
                     SWITCH
C:0170H
           SYMBOL
                     TIME
           PROC
                     TIME
                     TIME
           ENDPROC
                     LITE
C:01BCH
           SYMBOL
           PROC
                     LITE
           ENDPROC
                     LITE
C:0320H
           SYMBOL
                      ZONE
           PROC
                      ZONE
                     ZONE
           ENDPROC
C:038BH
           LINE#
                     1
                     67
C:001EH
           LINE#
C:001EH
           LINE#
                     68
                     69
C:0020H
           LINE#
C:0022H
           LINE#
                     70
                     72
C:0027H
           LINE#
                     73
C:002AH
           LINE#
C:002CH
           LINE#
                     74
                     75
C:002EH
           LINE#
                     76
C:0039H
           LINE#
                     77
C:003BH
           LINE#
                     79
C:0040H
           LINE#
                     80
C:0043H
           LINE#
                     81
C:0045H
           LINE#
                     82
C:0047H
           LINE#
                     83
C:0049H
           LINE#
C:004EH
           LINE#
                     84
                     85
C:0051H
           LINE#
C:0051H
                     86
           LINE#
                     87
C:0051H
           LINE#
C:0052H
           LINE#
                     88
C:0052H
                     89
           LINE#
                     90
C:0056H
           LINE#
                     92
C:005BH
           LINE#
                     93
C:0070H
           LINE#
                     94
C:0078H
           LINE#
                     95
C:007FH
           LINE#
                     96
C:007FH
           LINE#
```

С:0081н	LINE#	97
C:0087H	LINE#	98
C:008DH	LINE#	99
C:0094H	LINE#	100
C:0094H	LINE#	101
C:0094H	LINE#	102
C:00AlH	LINE#	103
C:00A5H	LINE#	104
C:00A9H	LINE#	105
C:00ADH	LINE#	106
C:00B1H	LINE#	107
C:00B5H		108
С:00В9Н	LINE#	110
C:00BAH	LINE#	111
C:00BAH	LINE#	112
C:00C2H	LINE#	113
C:00C4H		115
C:00C8H	LINE#	117
C:00CAH	LINE#	119
C:00DFH	LINE#	120
C:OOE1H	LINE#	121 123
C:00E3H	LINE# LINE#	125
C:00E7H C:00E9H		125
C:00E9H	LINE#	128
C:00EBH	LINE#	129
C:0100H	LINE#	130
C:0104H	LINE#	132
C:0108H	LINE#	134
C:010AH	LINE#	135
C:010CH	LINE#	136
C:0112H	LINE#	138
С:0117Н	LINE#	140
C:0124H		141
С:0129Н		142
С:0129Н	LINE#	143
C:012BH	LINE#	144
C:0131H	LINE#	145
С:0136Н	LINE#	146
С:0136Н	LINE#	147
C:014BH	LINE#	148
C:014DH	LINE#	149
C:014FH	LINE#	151
C:0153H	LINE#	153 154
С:0155H С:0157H	LINE#	154
C:0157H	LINE#	157
C:0157H	LINE# LINE#	158
C:0157H C:0158H	LINE#	159
C:0158H	LINE#	160
C:015CH	LINE#	161
C:0156H	LINE#	162
C:016BH	LINE#	163
C:016FH	LINE#	164

С:0170Н	LINE#	165
C:0170H	LINE#	166
C:0174H	LINE#	168
C:0176H C:0178H	LINE# LINE#	169 170
C:0176H C:017AH	LINE#	170
C:017CH	LINE#	172
C:017EH	LINE#	173
C:0180H	LINE#	174
C:0183H	LINE#	176
C:0195H	LINE#	178
C:0197H	LINE#	179
C:0199H C:019BH	LINE# LINE#	180 181
C:019BH	LINE#	182
C:01A3H	LINE#	184
C:01B7H	LINE#	186
C:01B9H	LINE#	187
C:01BBH	LINE#	189
C:01BCH	LINE#	190
C:01BCH	LINE#	191
C:01BFH C:01C5H	LINE# LINE#	192 193
C:01C7H	LINE#	194
C:01DCH	LINE#	195
C:01DEH	LINE#	196
C:01F3H	LINE#	197
C:01F5H	LINE#	198
C:020AH	LINE#	199
C:020CH	LINE#	200
C:0221H C:0223H	LINE# LINE#	201 202
C:0238H	LINE#	203
C:023AH	LINE#	204
C:0246H	LINE#	205
C:0249H	LINE#	206
C:0251H	LINE#	208
C:0255H	LINE#	209
C:0257H C:0259H	LINE# LINE#	210
C:0259H	LINE#	211 212
C:025DH	LINE#	213
C:025FH	LINE#	215
C:0261H	LINE#	216
С:0263Н	LINE#	217
C:0265H	LINE#	218
C:0267H	LINE#	219
C:0269H C:026BH	LINE# LINE#	220 222
C:026BH	LINE#	222
C:026FH	LINE#	224
C:0271H	LINE#	225
C:0273H	LINE#	226
C:0275H	LINE#	227

С:0277Н	LINE#	229
C:0277H		
C:0279H		
C:027BH		231
C:0275H		233
C:0271H		234
С:0283Н		236
C:0285H		237
C:0287H		238
С:0289Н		239
C:028BH		240
C:028DH		241
C:028FH		
C:0291H		
С:0293Н		
C:0295H		
C:0297H		
С:0299Н		
C:029BH		
C:029DH		
C:029FH		
C:02A1H		253
C:02A3H		254
C:02A7H	LINE#	256
C:02A7H	LINE#	257
C:02ABH	LINE#	258
C:02ADH	LINE#	259
C:02BBH	LINE#	260
C:02BDH	LINE#	261
C:02CBH		262
C:02CFH		263
C:02D3H		264
C:02D5H		265
C:02E2H		266
C:02EBH		267
C:02EDH		
C:02FEH	LINE#	269
C:0302H	LINE#	270
C:0304H	LINE#	271
C:0311H	LINE#	272
C:0315H	LINE#	273
C:031AH	LINE#	274
C:031FH	LINE#	275
C:0320H C:0320H	LINE#	276
C:0325H	LINE# LINE#	277 279
C:0323H	LINE#	280
C:033AH	LINE#	281
C:0352H	LINE#	282
C:0355H	LINE#	283
C:0353H	LINE#	284
C:036DH	LINE#	285
C:0382H	LINE#	286
C:0385H	LINE#	287
		,

C:038AH	LINE#	289
C:038BH	LINE#	290
C:038EH	LINE#	291
C:0391H	LINE# LINE# LINE#	292
C:0394H	LINE#	293
C:0397H	LINE#	294
C:039AH	LINE#	295
C:039DH	LINE#	296
C:039FH	LINE#	297
C:03A1H	LINE#	298
C:03A4H	LINE# LINE# LINE# LINE# LINE# LINE# LINE#	299
C:03AAH	LINE#	300
C:03AAH	LINE#	301
C:03AFH	LINE#	302
C:03B1H	LINE# LINE# LINE# LINE# LINE# LINE# LINE#	303
C:03B3H	LINE#	304
C:03B5H	LINE#	305
C:03B7H	LINE#	306
C:03BEH	LINE# LINE# LINE# LINE#	308
C:03C0H	LINE#	309
C:03C2H	LINE#	310
C:03C4H	LINE#	311
С:03С9Н	LINE# LINE# LINE#	312
C:03CBH	LINE#	313
C:03CDH	LINE#	314
C:03CFH	LINE#	315
C:03D4H	LINE#	316
C:03D6H	LINE#	317
C:03D8H	LINE#	318
C:03DAH	LINE# LINE# LINE# LINE#	319
C:03DCH	LINE# ENDMOD	320
	ENDMOD	NASA00


APPENDIX III

INSTRUMENT CONDITIONS

GOW-MAC INSTR	RUMENT CO.
BRIDGEWATER, N	IEW JERSEY
DATE	

INSTR. MODEL 69-550	SAMPLE JP-5 IN AVGAS		
DETECTOR TCD	SOLVENT AVGAS		
COLUMN SIZE 10'X1/8' SS	SAMPLE SIZE 1 MICROLITER		
LIQUID PHASE	TEMP:		
SUPPORT	COLUMN 250 DEG.C		
CARRIER GAS HELIUM	INJ. PORT 250 DEG.C		
CARRIER FLOW 30ml/MIN	DETECTOR 300 DEG.C		
H2 FLOW	BRIDGE CURRENT		
AIR FLOW	ATTENUATION 1		
RECORDER FS:lmv	CHART SPEED lcm/MIN		

APPENDIX IV

National Aeronautics and Space Administration Report Documentation Page				
1. Report No.	2. Government Accession	n No.	3. Recipient's Catalog	No.
NASA TP-2803				
4. Title and Subtitle			5. Report Date	
Investigation of the Mi	sfueling of Recipr	ocating	Ma rch 1988	
Piston Aircraft Engin		-	6. Performing Organiz	ation Code
			824.	2
7. Author(s)			8. Performing Organiz	
7. Authority				r
J. Holland Scott, Jr.		,	40 Mil Libra Na	
			10. Work Unit No.	
9. Performing Organization Name and Ac	dress			
NASA Goddard Space Flig	ht Center		11. Contract or Grant	No.
Wallops Flight Facility				
Wallops Island, VA 233	3/		13. Type of Report and	d Period Covered
12. Sponsoring Agency Name and Addres	S		Toologi	and Dames
National Aeronautics and Space Administration Washington, DC 20546		tion	Technical Paper 14. Sponsoring Agency Code	
16. Abstract				
The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline (avgas). The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator (FBO). The gas chromatograph, in addition to providing excellent quality control of the FBO's fuel handling operation, is a very good back-up for the detection kit in the event it produces positive results. Design parameters were developed to the extent that they may be easily applied to commercial production by the aircraft industry.				
17. Key Words (Suggested by Author(s)) 18. Distribution Statement				
General Aviation Jet F	General Aviation Jet Fuel Unclassified - unlimited			
· · · · · · · · · · · · · · · · · · ·	Detonation			
	ration able Gas Mixtures			
Avgas Gas C	nromatograph		Subject Cat	
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of pages	22. Price
Unclassified	Unclassified		79	A05